

# Aggregated α-synuclein in erythrocytes as a protentional biomarker for idiopathic Parkinson's Disease

Konstantina Dimoula<sup>1</sup>, Dimitris Anagnostou<sup>1</sup>, Nikolaos Papagiannakis<sup>2</sup>, Matina Maniati<sup>3</sup>, Leonidas Stefanis<sup>2</sup>, Evangelia Emmanouilidou<sup>1</sup>

<sup>1</sup>Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
<sup>2</sup> Department of Neurology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
<sup>3</sup> Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of Academy of Athens, Athens, Greece (<a href="mailto:knodim@chem.uoa.gr">knodim@chem.uoa.gr</a>)

**Background** Mostly known for its implication in synucleinopathies, including Parkinson's disease (PD),  $\alpha$ -synuclein is predominantly expressed in the nervous system. Most of the peripheral  $\alpha$ -synuclein is found in erythrocytes, and several studies have examined a possible association between erythrocytic  $\alpha$ -synuclein and PD.

**Methods** We have used a recently developed ELISA that selectively detects fibrillar and oligomeric α-synuclein to measure aggregated α-synuclein in red blood cells (RBCs) collected from PD patients and age/sex-matched control individuals (n=35). Optimization studies have been previously performed to develop the aggregated α-synuclein ELISA. The mouse monoclonal Syn-F2 antibody, which preferentially binds to mature amyloid fibrils and high molecular weight oligomers, was used to capture fibrillar and oligomeric α-synuclein assemblies. To ensure selectivity, the aggregate-specific rabbit monoclonal antibody MJFR-14-6-4-2 was used as the detection antibody. Sonicated PFFs were used as calibrators. The PD group included patients without any common mutation (genetically undetermined group, GU-PD, n=56) as well as mutation carriers in the α-synuclein gene (A53T-PD, n=28) and glucocerebrosidase gene (GBA-PD, n=24).

#### Basic conformations of α-synuclein's



### Conformation-specific ELISA



2.57 GU-PD

Age of onset



#### Results

## A. Specificity of the measurements using the conformation-specific ELISA in lysed RBCs (Figure 1).

- (A) Assessment of serial dilutions of a control RBC sample. Dilutions were made in TBS-T/BSA buffer and measured in triplicate.
- (B) Assessment of a PD RBC sample before and after the addition of 1.2 or 3.6 ng/ml PFFs. Aggregated  $\alpha$ -synuclein after the PFF addition was estimated using the standard addition method. Data in A and B are presented as mean  $\pm$  SEM.
- (C) Measurement of total protein concentration in lysed RBCs from the control (n=34) and GU-PD (n=56) groups using the Bradford method. Statistics were performed by Student's t-test (p=0.4024).

# B. Aggregated, but not total, $\alpha$ -synuclein is elevated in erythrocytes from PD patients compared to controls (Figure 2).

- (A) Aggregated  $\alpha$ -synuclein was measured in RBCs from controls (n=35) and GU-PD patients (n=56). Statistics were performed by Mann Whitney test (\*\*p=0.0067).
- (B) The levels of aggregated  $\alpha$ -synuclein found in GU-PD patients were compared to PD patients carrying GBA and A53T mutations. Statistics by Kruskal-Wallis test followed by Dunn's multiple comparisons test (p=0.0102, 0.9616, and >0.9999 for GU-PD, GBA-PD and A53T-PD vs controls, respectively).
- (C) The concentration of aggregated  $\alpha$ -synuclein is compared to total  $\alpha$ -synuclein in RBCs from 9 controls and 9 GU-PD patients. In each case, control vs GU-PD groups were compared by Student's t-test (\*p=0.02319 for aggregated  $\alpha$ -synuclein, p=0.9327 for total  $\alpha$ -synuclein).
- (D) The concentration of aggregated  $\alpha$ -synuclein is compared to the aggregated:total ratio in RBCs from 9 controls and 9 GUPD patients. Control vs GU-PD groups were compared by Mann-Whitney test (\*p=0.0326 for aggregated  $\alpha$ -synuclein, \*\*p=0.0078 for aggregated:total ratio).

### C. The accumulation of $\alpha$ -synuclein aggregates in PD erythrocytes is not due to aging (Figure 3). (A. B.) Correlation analysis of aggregated $\alpha$ synuclein concentration with the ac

(**Figure 3**). (A, B) Correlation analysis of aggregated α-synuclein concentration with the age of

the control (A, R2=0.1845) or the GU-PD (B, R2=0.02628) groups. (C, D) Correlations between aggregated α- synuclein and age of onset (C, R2=0.05688) or disease duration (D, R2=0.03989).







### Conclusions

- A recently developed conformation-specific ELISA can detect aggregated forms of α-synuclein in erythrocytes from both PD patients and control individuals.
- Aggregated, but not total,  $\alpha$ -synuclein is elevated in erythrocytes from PD patients compared to controls.
- The accumulation of α-synuclein aggregates in erythrocytes is not due to aging and does not depend on the severity of disease.
- Erythrocytic aggregated α-synuclein can discriminate PD from control subjects and could be a potential biomarker for PD.

GU-PD

p=0.0095

Disease duration

(years)