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α-Synuclein (AS) is a small presynaptic protein that is genetically, biochemically, and neuro-
pathologically linked to Parkinson’s disease (PD) and related synucleinopathies. We present
here a review of the topic of this relationship, focusing on more recent knowledge. In partic-
ular, we review the genetic evidence linking AS to familial and sporadic PD, including a
number of recently identified point mutations in the SNCA gene. We briefly go over the
relevant neuropathological findings, stressing the evidence indicating a correlation be-
tween aberrant AS deposition and nervous system dysfunction. We analyze the structural
characteristics of the protein, in relation to both its physiologic and pathological conforma-
tions, with particular emphasis on posttranslational modifications, aggregation properties,
and secreted forms.We review the interrelationship of ASwith various cellular compartments
and functions, with particular focus on the synapse and protein degradation systems. We
finally go over the recent exciting data indicating that AS canprovide the basis for novel robust
biomarkers in the field of synucleinopathies, while at the same time results from the first
clinical trials specifically targeting AS are being reported.

Since the initial discovery in 1997 of the genet-
ic link between Parkinson’s Disease (PD) and

SNCA, the gene encoding for the presynaptic
neuronal protein α-synuclein (AS), the evidence
supporting the importance of AS in PD patho-
genesis and evolution has continued to mount.
The combination of further genetic discoveries
and the understanding of AS biology and its im-
pact on cellular processes, through the develop-
ment of relevant cellular and animal models, has
been instrumental in this regard. This has cul-

minated recently in the emergence of thefirst wet
biomarker for PD, based on the aggregation
properties of AS, and in the execution of the first
clinical trials targeting AS. In this paper, which
follows a similar article published by Stefanis
(2012), we attempt to summarize the main as-
pects of AS biology, focusing on its normal func-
tion, its aggregation properties and cellular path-
ogenic effects, its genetic and neuropathological
link to PD, its potential as a biomarker, and,
finally its targeting in clinical trials.
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THE ORIGINS OF THE LINK: SNCA AS AN
IMPORTANT GENETIC CONTRIBUTOR TO
PARKINSON’S DISEASE

In PD, unlike Alzheimer’s Disease (AD) where
the neuropathological discovery of β-amyloid
deposition preceded the genetic discovery of
mutations in the amyloid precursor protein
(APP) leading to autosomal-dominant AD, ge-
netics came first. In 1997, Polymeropoulos et al.
(1997) reported for the first time a specific ge-
netic defect leading to familial PD. This involved
a large family of Italian origin, the Contursi kin-
dred, with an autosomal-dominant pattern of
inheritance. The genetic defect identified was a
missense p.A53T mutation in the SNCA gene.
This was conceptually very important, as it ran
against the perceived notion of PD as a sporadic
disease initiated by environmental factors. Im-
portantly, in the same publication (Polymero-
poulos et al. 1997), Greek PD patients with an
autosomal-dominant inheritance pattern from
seemingly unrelated families were identified
with the same mutation, solidifying the etiolog-
ical link and demonstrating a founder effect,
likely thousands of years old. Since then, fur-
ther research on carriers of this particular mu-
tation has refined the clinical and other mani-
festations of the disease. Despite noticeable
heterogeneity, ranging from incomplete pene-
trance to extremely aggressive manifestations,
the general pattern is that of a disease that pre-
sents early, with amean age of onset of 45, and is
more severe compared to idiopathic PD (iPD)

(Papadimitriou et al. 2016). Over this period of
27 years, a number of other point mutations in
the SNCA gene have been identified, all leading
to autosomal-dominant PD (Fig. 1; Krüger et al.
1998; Zarranz et al. 2004; Appel-Cresswell et al.
2013; Kiely et al. 2013; Lesage et al. 2013; Prou-
kakis et al. 2013; Pasanen et al. 2014; Kapasi et al.
2020; Fevga et al. 2021; Liu et al. 2021; Daida
et al. 2022; Diawet al. 2023). Such cases are rarer,
compared to those harboring the p.A53T muta-
tion, so their clinical picture is not as well de-
fined, but seems to vary by the specificmutation.
An insertion of seven amino acids leading to an
elongated peptide conferring novel aggregation
properties has also been reported in a case of
juvenile onset (Yang et al. 2023). Although a
toxic gain of function is a common denomina-
tor, not all mutations lead to enhanced aggrega-
tion propensity; for example, the clinically ag-
gressive G51Dmutant form decreases the rate of
fibrillization (Rutherford et al. 2014), but G51D
fibrils, once formed, have altered properties that
may lead to enhanced seeding and neurotoxicity
(Hayakawa et al. 2020; Sun et al. 2021). It is fair
to say that no single mechanism has been iden-
tified throughwhich SNCA pointmutations lead
to PD; this could either indicate that such a com-
mon mechanism has yet to be identified, or that
such pointmutations lead to the disease through
different mechanisms.

Yet another conceptual leap was the discov-
ery in 2003 that excess copies of the SNCA gene
could lead to autosomal-dominant disease. In
particular, the Iowa kindred was the first to be
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Figure 1. Simplified schematic illustration of α-synuclein primary structure. Within the three basic protein
domains (amphipathic, hydrophobic nonamyloid component [NAC], and acidic), the KTKEGV motifs, the
known point mutations and the phosphorylation sites are depicted.
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discovered to harbor a triplication of the SNCA
locus (Singleton et al. 2003). Subsequently, dupli-
cationswere also identified (Chartier-Harlin et al.
2004). Intriguingly, there is an obvious gene dos-
age effect, in that caseswith the SNCA triplication
versus duplication demonstrate a much higher,
basically complete, penetrance, earlier age of
onset, and enhanced disease severity, including
prominent cognitive decline. This brings home
the important point that excess levels of the nor-
mal AS protein are sufficient to lead, in a dose-
dependent fashion, to the neuropathological and
clinical manifestations of PD, establishing the
importance of AS levels in PD pathogenesis.

The genome-wide association studies
(GWAS) in populations of predominant Cauca-
sian origin have collectively and cumulatively
shown that the highest hit most strongly associat-
ed with sporadic PD is in the SNCA locus (Nalls
et al. 2019). This has been recently confirmed in
two large non-Caucasian ethnic groups in China
and India (Pan et al. 2023; Andrews et al. 2024).
Thus, irrespective of ethnic origin, genetic alter-
ations within the SNCA locus significantly influ-
ence the risk of development of sporadic PD,
proving that sporadic PD is linked genetically to
SNCA and AS. The GWAS approach thus pro-
vided an unbiased platform to confirm prior tar-
geted association studies (Mueller et al. 2005). The
polymorphisms associated with the disease ap-
pear to be associated with higher SNCA mRNA
andASprotein levels (Fuchs et al. 2008), butmore
work is needed to substantiate this. This genetic
association, not surprisingly, extends to other syn-
ucleinopathies, such as dementia with Lewy bod-
ies (DLBs) (Guerreiro et al. 2018; Chia et al. 2021)
or REM sleep behavior disorder (RBD) (Krohn
et al. 2022), although the exact sites of associa-
tion may not be identical. These studies overall
clearly establish SNCA as a pleomorphic gene lo-
cus involved both in rare genetic and sporadic
forms of PD and other synucleinopathies.

NEUROPATHOLOGICAL FINDINGS
LINKING α-SYNUCLEIN TO PARKINSON’S
DISEASE

Very soon after the genetic discovery of the
p.A53T SNCA mutation, studies were per-

formed to assess whether deposition of AS could
be discerned within neuronal Lewy bodies (LBs)
and Lewy neurites (LNs), the characteristic neu-
ropathological features of PD. This proved to be
the case, not only in the rare genetic synuclein-
opathies, but also in the vast majority of iPD
brains examined, and even in a range of related
conditions, termed collectively LB diseases, such
as DLB (Spillantini et al. 1997, 1998; Baba et al.
1998). AS antibodies (Abs) label the filamentous
portion of LBs, consisting of a single protofila-
ment, as identified by cryo-electronmicroscopy,
thus having different properties from AS fila-
ments identified in the oligodendrocytic synu-
cleinopathy multiple system atrophy (MSA)
(Yang et al. 2022). AS filaments may not be ho-
mogeneous across PD cases, suggesting different
strains that may confer variable pathogenic ef-
fects, accounting partially for disease heteroge-
neity and distinct subtypes (Strohäker et al.
2019). Of note, nonfilamentous AS, that may
be quite abundant, also exists within LB (Shah-
moradian et al. 2019). There is likely also con-
siderable astrocytic AS pathology in the spec-
trum of LB diseases, which is just beginning to
be appreciated (Altay et al. 2022).

Immunostaining was used for the ground-
breaking neuropathological study of Braak et al.
(2003), which provided a basis for the staging of
the disease. LNs, mainly, and also LBs, were pre-
sent in various brain regions even in asymptom-
atic individuals. According to this staging
scheme, aberrant AS deposition follows a stereo-
typical pattern from initial sites of involvement in
theolfactorybulb and thedorsalmotornucleus of
the vagus to more rostral areas of the brainstem,
involving the substantia nigra pars compact at a
third stage, and eventually to higher order asso-
ciation cortical areas in stages 5 and 6 (Braak et al.
2003). This AS immunohistochemical staging
schemehas beencontroversial but has beenborne
out by most subsequent studies (e.g., Coughlin
et al. 2019). Alternative staging schemes have
been proposed to account for more rostral AS
deposition in the absence of obligatory brainstem
involvement in initial disease stages (Beach et al.
2009; Borghammer et al. 2021). Overall, there is
consensus that aberrant AS deposition, as as-
sessed by traditional AS immunostaining, is asso-
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ciatedwithregionalbraindysfunction,whichhow-
ever is not always obvious clinically, as seemingly
healthy individuals may harbor advanced stages
of AS pathology (Parkkinen et al. 2008).Whether
AS aberrant deposition is actually the cause of
neuronal dysfunction is a question of debate, as
some consider that such deposition could be sec-
ondary and incidental, and this notion cannot be
excluded at this time (Espay et al. 2019). Of great
interest is the newly developed technique of prox-
imity ligation assay (PLA), which labels preferen-
tially intermediate, oligomeric, and not fully fi-
brillar forms of AS (Roberts et al. 2015). In a
recent application of this technique in PD brains,
it was found that PLA-identified AS pathology in
the hippocampus correlated much better with
cognitive dysfunction than staining for classical
Lewy pathology (Sekiya et al. 2022).

A related issue is that some genetic PD cases
do not manifest Lewy pathology. In particular,
biallelic PRKN mutation carriers rarely manifest
such pathology (for review, see Madsen et al.
2021), while LRRK2 mutation carriers manifest
quite significant variability in this regard. Among
LRRK2mutation carriers, those with the G2019S
mutationmost often show evidence of synuclein-
opathy, in 60%–70% of cases. Interestingly, there
is an association between the existence of Lewy
pathology and more widespread nonmotor dis-
ease manifestations, suggesting again that AS pa-
thology is linked to brain dysfunction (Kalia et al.
2015).

Overall, the combination of genetic and
neuropathological evidence, but also the evi-
dence provided by the cell and animal models
below, provides a strong argument for the path-
ogenicity of AS abnormal conformations in the
context of PD and related synucleinopathies.

STRUCTURE, PHYSIOLOGICAL FUNCTION,
AND SECRETION

Full-length AS is a small 140 aa protein primarily
expressed in the presynaptic nerve endings of the
adult brain in a region-specific manner. Except
from the full-length protein, truncated AS frag-
ments of 126, 112, and 98 aa are produced by
alternative splicing (Beyer et al. 2006; McLean
et al. 2012). The primary structure of AS consists

of three distinct well-characterized domains, each
conferring different physicochemical properties
to the protein (Fig. 1). The basic amino terminus
(1–60 aa) carries seven 11 aa repeats containing
the consensus KTKEGV sequence, which is well-
conserved among species and among all the
members of the synuclein family, α, β, and γ-
synucleins (Bussell and Eliezer 2003). Due to
this repeated motif, AS can adopt a helical sec-
ondary structure that can take the form of either
two interconnected antiparallel α-helices in sol-
ution or one contiguous α-helix upon binding to
acidic lipid membranes (Fusco et al. 2014). The
highly hydrophobic nonamyloid component
(NAC) core domain (61–95 aa) provides, at least
to a great extent, the inherent property of AS to
self-aggregate, generating high-order fibrillar or
lowmolecular weight (LMW) oligomeric assem-
blies (Giasson et al. 2001). Last, the acidic car-
boxy-terminal tail (96–140 aa) carriesmost of the
posttranslational modifications (PTMs) and is
capable of Ca2+ binding (Oueslati et al. 2010).
This domain underlies the flexible nature of the
protein since it hosts the majority of the molec-
ular interactions of AS with other proteins, met-
als, or small molecules (Uversky et al. 2001). Im-
portantly, the carboxyl-terminus region can
interact transiently with the amino-terminus do-
main forming compact structures that are resis-
tant to aggregation (Hong et al. 2011; Burré et al.
2012). In addition, carboxy-terminally truncated
AS (CT-AS) products tend to aggregate faster
than the full-length protein, supporting a role
of the C-end in preserving the normal structure
of the protein (Hoyer et al. 2004; Li et al. 2005).

Despite extensive investigation, the exact na-
tive secondary structure of AS remains largely
unresolved. AS has been characterized as an in-
trinsically unfolded protein retaining minimal
ordered structure in simple solutions (Uversky
et al. 2001; Fauvet et al. 2012). In a cellular envi-
ronment, it can physiologically adopt multiple
conformations ranging from α-helical LMW
multimers to β-sheet rich high molecular weight
oligomers and aggregates (Uversky 2003). Even
though it lacks a trans-membrane or a lipid-an-
chor domain, AS can peripherally associate with
cellularmembranes showing a preference to acid-
ic or high curvature membranes. Membrane
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binding drives a conformational change toward
the α-helical structure and can either promote or
prevent multimerization. In this context, previ-
ous studies have shown that themolecular crowd-
ing conditions in the cytosol encourage the
endogenous formation of tetrameric assemblies,
which are characterized by a helical conforma-
tion and appear resistant to further aggregation
(Bartels et al. 2011). However, subsequent studies
failed to confirm that the tetramer is a predom-
inant conformation ofAS in the cytosol, conclud-
ing that cytosolic AS remains mostly as a mobile
monomeric protein constantly binding tovarious
interactors (Binolfi et al. 2012; Theillet et al.
2016).

The primary physiological function of AS
has not been fully elucidated, but it appears to
have a key role in the regulation of synaptic
transmission and dopamine synthesis. Even
though it is not required for neuronal develop-
ment, synapse formation, or neurotransmission
per se, AS can potently modulate synaptic activ-
ity through differentmodes of action. A plethora
of studies have elaborated on the role of AS in
synaptic vesicle (SV) trafficking, particularly in
SV clustering (Diao et al. 2013;Wang et al. 2014)
and distribution (Scott and Roy 2012; Sun et al.
2019). Further elaboration on this role suggested
that AS could modulate exocytosis in a dose-
dependent manner through dilation of the exo-
cytic fusion pore during the “kiss-and-run” pro-
cess, a mechanism that applies to both regulated
protein secretion and neurotransmission (Lo-
gan et al. 2017; Nellikka et al. 2021). AS can
directly associate with the SV membrane via its
interaction with the chaperone cysteine-string
protein a (CSPa) and the vesicle SNARE protein
synaptobrevin-2 (VAMP2) to either facilitate
SNARE complex assembly or prevent the disas-
sembly of the SNARE complex until neurotrans-
mitter release is completed (Burré et al. 2010;
Garcia-Reitboeck et al. 2010). Further support-
ing a chaperone-like activity, 14-3-3 chaperone
protein and its binding partners can also bind to
AS (Ostrerova et al. 1999; Williams et al. 2021).
Finally, AS can act as a negative modulator of
dopamine synthesis and recycling as suggested
by its interaction with the dopamine synthesis
enzymes, tyrosine hydroxylase (TH), and aro-

matic amino acid decarboxylase as well as with
dopamine transporter (DAT) (Tehranian et al.
2006; Swant et al. 2011; Butler et al. 2015, 2017;
Sivakumar et al. 2023).

Apart from these well-defined physiological
functions, AS has also been implicated in sup-
pression of apoptosis by inhibiting PKC activity
(Jin et al. 2011; Guo et al. 2021), regulation of
glucose levels (Rodriguez-Araujo et al. 2013;
Wijesekara et al. 2021), regulation of calmodulin
activity (Martinez et al. 2003; Ueda et al. 2023),
maintenance of polyunsaturated fatty acid lev-
els, and neuronal differentiation (Surguchov
2024).

Despite the lack of a signal sequence, AS is
physiologically secreted in the extracellular mi-
lieu suggesting a yet unidentified paracrine role
for this protein (Lee et al. 2005; Emmanouilidou
et al. 2010a,b;Wu et al. 2023). In support for such
a modulatory role, the mechanism of AS secre-
tion is Ca2+-dependent and seems to be precisely
regulated by neuronal activity in the brain (Em-
manouilidou et al. 2016; Yamada and Iwatsubo
2018). Still, our understanding about the mech-
anisms that regulate AS release is largely in-
complete. Although initially proposed, passive
diffusion cannot account for such release, as
cell-produced AS cannot freely diffuse out from
the cell interior (Lee et al. 2008). Instead, insights
from cell culture systems indicate that AS follows
an unconventional pathway of release that in-
volves, at least in part, the externalization of exo-
somes, nano-sized extracellular vesicles (EVs) of
endosomal origin that participate in targeted in-
tercellular communication (Emmanouilidou et
al. 2010a,b; Alvarez-Erviti et al. 2011; Fussi et
al. 2018). Since exosome-associated AS is only a
minor part of externalized AS, conventional ER-
Golgi exocytosis could mediate AS export, as in-
dicated by the association of the protein with
secretory vesicles, although direct evidence that
these vesicles are responsible for AS secretion is
missing (Lee et al. 2005; Logan et al. 2017). In the
context of the living brain, the secretion of AS
from glutamatergic terminals in the striatum is
tightly controlled by the levels of the neurotrans-
mitter GABA through an intercellular mecha-
nism that involves presynaptic Ca2+ channels,
further suggesting that the maintenance of extra-
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cellular AS levels in the brain parenchyma is crit-
ical for neuronal homeostasis (Emmanouilidou
et al. 2016).

It is unclear whether the different conforma-
tions (normal, misfolded, or fibrillar) are released
using common secretory pathways. Part of the
misfolded cytoplasmic AS can escape cells using
an unconventional pathway of release called mis-
folding-associated protein secretion (MAPS) that
is mediated by the selective sorting of cargos to
late endosomes and fusion of these endosomes
with the plasmamembrane (Lee et al. 2016). Act-
ing as a co-chaperone of Hsc70, CSPa forms a
high-order oligomer that captures AS upon pal-
mitoylation and mediates its translocation to the
late endosome lumen. The multivesicular body
(MVB) that is subsequently generated carries
soluble AS cargo, which is released upon fusion
of the MVB with the plasma membrane (Wu
et al. 2023). Alternatively, AS multimers that
can accumulate within lysosomes can be released
from neurons via SNARE-dependent lysosomal
exocytosis (Xie et al. 2022).

Increased levels ofAS oligomeric species have
been observed to be associated with exosomes
(Delenclos et al. 2017; Guo et al. 2020). Further-
more, AS has been detected in exosomes from
patients with synucleinopathies (Stuendl et al.
2016; Harischandra et al. 2019), and AS muta-
tions have been reported to aid the packaging of
aggregated protein in exosomes (Gustafsson et al.
2018). In this regard, exosomes derived from PD
patient tissue or from inflamed cells induce AS
aggregation and pathology in vitro and in vivo
(Grey et al. 2015; Lee et al. 2016; Huang et al.
2022; Jin et al. 2023). Endogenous AS appears
to be essential for the ability of exosomes to prop-
agate pathology in vivo (Melachroinou et al.
2024). In general, research to date is confirming
a role for exosomes in the transmission of AS
pathology in synucleinopathies; however, the ex-
act mechanisms related to their packaging, re-
lease, and uptake have not been elucidated yet.

α-SYNUCLEIN AGGREGATION STATES:
FOCUS ON STRAINS

It is widely considered that the toxic potential of
AS is linked to its propensity to assume under

certain circumstances abnormal conformations,
such as intermediate soluble oligomers, also
termed protofibrils, and eventually mature fi-
brils. The exact nature of the toxic species re-
mains elusive. Importantly, fibrillar forms can
transform soluble monomeric AS into an aggre-
gated conformation. This forms the basis for the
presumed disease propagation across brain re-
gions (Lee et al. 2011) and the first wet bio-
marker for PD (see below).

So far, the findings from in vitro and in vivo
experiments, and the observation in human tis-
sue samples suggest that oligomers play a critical
role in the initiation and progression of α-synu-
cleinopathies (Kalia et al. 2013; Cremades et al.
2017). The oligomers that lead to fibril formation
are known as “on-pathway” species. However,
there are also “off-pathway” species that do not
progress into fibrils (Miraglia et al. 2018). De
Giorgi et al. (2020) demonstrated that, during
fibril formation frommonomeric AS, newly gen-
erated fibrils could be ThT-negative despite ex-
hibiting a clear β-sheet structure in ssNMR. In-
terestingly though, injection of such fibrils into
the SN of mice caused pS129 AS accumulation
and spreading to other interconnected brain
structures (De Giorgi et al. 2020). The different
disease phenotypes observed in synucleinopa-
thies suggest that each disorder may be caused
by a different “strain” of AS conformations. Im-
portantly, these different strains appear to affect
specific cellular populations in the brain and
maintain an ability to be serially transmitted,
reminiscent of prions (Lau et al. 2020). This ob-
servation possibly suggests that strain-specific in-
formation is carried by the structure of the aggre-
gated AS and can be transmitted, akin to prion
molecules. It has also been proposed that the cel-
lular environment drives one conformation over
another (Woerman 2021). In this respect, Peng
and colleagues demonstrated in a formative study
that oligodendrocytes present a specific type of
AS conformations, which differs from that in
neurons (Peng et al. 2018). It is possible that dif-
ferent assemblies also exist between different neu-
ronal types, which could in part explain their
differential vulnerability in PD. In agreement
with different conformers of AS having distinct
biological and structural properties, distinct AS
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strains named ribbons andfibrils could propagate
in human iPSC (induced pluripotent stem cell)-
derived neurons; ribbons were more potent in
recruiting and seeding endogenous AS, and re-
sulted in more pS129-positive AS inclusions
(Gribaudo et al. 2019).

Importantly, neurons from AS knockout
mice exposed to AS fibrils do not develop intra-
cellular inclusions and have intact neuronal
function. Thus, endogenous AS templating to
form insoluble fibrillar aggregates is crucial for
pathology initiation and progression (Rey et al.
2018). Despite these major advances, a crucial
unanswered question is whether these recombi-
nant oligomers have different properties to the
actual aggregates found in the brain in terms
of heterogeneity and toxicity. Innovative ap-
proaches are urgently needed to detect and sep-
arate specific strains in the brains of individuals
with synucleinopathies, as existing methods fall
short in this regard.

CELLULAR AND ANIMAL PARKINSON’S
DISEASE MODELS

Various cellular and animal PD models have
been developed to investigate the pathological
roles of the protein, including transgenic ap-
proaches, use of viral vectors, and, more recently,
inoculation with recombinant preformed AS fi-
brils or LB extracts. However, none of thesemod-
els recapitulates faithfully all aspects of PD path-
ophysiology and the choice of the appropriate
model depends on the question being addressed.

Cellular models have been instrumental in
the identification of the pathological roles of AS
on various intracellular processes, such as mito-
chondrial function, oxidative stress, and protea-
somal/lysosomal degradation pathways (for re-
view, see Delenclos et al. 2019). Their main
advantage is that they enable modeling of the
mechanisms controlling the folding, oligomeri-
zation, aggregation, and cell-to-cell propagation
of the protein, as well as the high-throughput
screening of potential modifiers of these pro-
cesses. From the first and simplest yeast models
(Outeiro and Lindquist 2003) to more complex
cellular systems (for review, see Delenclos et al.
2019) using mammalian neuronal and non-

neuronal cell lines and, more recently, human-
ized iPSC-derived cultures generated from pa-
tient fibroblasts (Mohamed et al. 2019), these
cell-based systems provide a unique opportunity
to model the disease in a dish and test novel
pharmacological interventions. The generation
of fluorescent reporter lines enabled the dynamic
monitoring of AS–AS interactions and subse-
quent aggregation, even though it is questioned
whether the modified AS behaves similarly to its
nonmodified counterpart (Delenclos et al. 2019).
The newest models that use patient-derived
iPSCs allow investigation of the contribution of
protein aggregation to early axonal dysfunction
and provide novel mechanistic insights related to
patient-specific risk factors or disease-specific
mutations, thus paving the way for personalized
treatments. Finally, several studies are now using
iPSC-derived organoids or assembloids from PD
patients to model disease pathophysiology in a
more integrative manner that recapitulates better
the brain’s microenvironment (Bose et al. 2022;
Calabresi et al. 2023a,b).

On the other hand, PD animal models offer
the potential to model early alterations associat-
ed with AS overexpression and aggregation, that
precede dopaminergic cell loss, such as synaptic
dysfunction (synaptopathy) and nigrostriatal
plasticity (Cenci and Björklund 2020). These
models gradually develop LB-like inclusions of
aggregated AS, which usually leads to neuronal
loss, thus recapitulating major aspects of PD
pathology. The simplest invertebrate PDmodels
are particularly useful for high-throughput
screening applications, whereas mammalian
models are required to explore complex mo-
tor/nonmotor features and behavioral alter-
ations. Transgenic animal models involve the
expression of wild-type (WT) or PD-linkedmu-
tant forms of AS through different promoters,
thus enabling regional and temporal control of
expression. Viral vector–mediated models, on
the other hand, offer many advantages, includ-
ing the targeted injection into selective brain
areas, the capacity to transduce both neurons
and glia depending on the serotype used, and
the ability of injection at any age of the animal.

A major breakthrough in understanding the
mechanisms underlying the cell-to-cell propa-
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gation of AS-related pathology originated from
studies where human (or mouse) recombinant
AS preformed fibrils (PFFs) or PD brain extracts
containing LBs or extracts from AS transgenic
mice are injected into the brain (striatum,
substantia nigra, and olfactory bulb), muscles,
peritoneal cavity, or in the periphery of AS-over-
expressing or WT rodents or nonhuman pri-
mates (for review, see Recasens et al. 2018).
These studies are highly reproducible and are
characterized by the presence of widespread
Ser129-phosphorylated AS inclusions, mirror-
ing aspects of the spread and staging of the hu-
man disease. Similar approaches have also been
very fruitful in cellular and, in particular, neu-
ronal models, where it has been possible to
model the maturation of seeded AS fibrils into
LB-like structures through the engagement of
various compensatory but also detrimental neu-
ronal processes (Mahul-Mellier et al. 2020).

α-SYNUCLEIN POSTTRANSLATIONAL
MODIFICATIONS

AS exhibits a number of PTMs, including phos-
phorylation, ubiquitination, nitration, acetyla-
tion, truncation, SUMOylation, and O-GlcNA-
cylation. Of these, phosphorylated AS is thought
to be the major pathological form (Fig. 1; An-
derson et al. 2006).

Phosphorylation

Several studies have shown that AS phosphory-
lated at serine 129 (pSer129) is a marker of ma-
ture AS aggregates. Examination of postmortem
tissue from PD and MSA patients at different
disease stages showed that pSer129 AS is the
major and earliest PTM along PD progression
(Wakabayashi 2020; Sonustun et al. 2022). Nev-
ertheless, pSer129 seems to occur after the initial
aggregation process (Pantazopoulou et al. 2021;
Ghanem et al. 2022) and may have a physiolog-
ical role at the synapse (see below). An addition-
al caveat is that in models of AS overexpression,
such as for example viral models, phosphorylat-
ed AS is not necessarily aggregated and should
not be used as a sole readout of aggregation in
these circumstances.

Whether pSer129 is a driving force for AS
aggregation and neurotoxicity remains a subject
of debate. Mice inoculated with pSer129 AS
PFFs exhibited enhanced AS pathological dep-
osition and dopaminergic cell loss associated
with motor deficits (Karampetsou et al. 2017).
The Lashuel and Li groups, using semisynthetic
approaches to synthesize pSer129 AS, showed
that the phosphorylated fibers were toxic and
less resistant to proteolysis by proteinase K com-
pared to WT fibers, suggesting that S129 phos-
phorylation induces a distinct strain of AS spe-
cies (Fauvet and Lashuel 2016; Ma et al. 2016).
However, other studies have reported that
pSer129 phosphorylation does not influence
AS aggregation and can reduce its toxicity (Wes-
ton et al. 2021; Ghanem et al. 2022).

The role of pSer87 is controversial as this
PTM falls within the NAC region of AS, which
is crucial for its aggregation and fibrillogenesis.
However, pSer87 AS viral overexpression in the
nigrostriatal system of rats caused reduced accu-
mulation and no dopaminergic neuron loss or
motor impairment, in contrast to WT AS over-
expression (Oueslati et al. 2012). Collectively,
data on the phosphorylation sites at S129, S87,
and Y39 support the notion that phosphoryla-
tion decreases AS binding to membranes (Dikiy
et al. 2016; Reimer et al. 2022).

Nitration, Acetylation

Nitrated AS has been reported in various in vivo
and in vitro experimental models of PD and also
in association with LB pathology (Przedborski
et al. 2001; He et al. 2019; Manzanza et al. 2021;
Magalhães and Lashuel 2022). Increased levels
of nitrated AS have been detected in LBs and SN
neurons, as well as in peripheral blood mono-
cytes of PD patients (Prigione et al. 2010). Ni-
tration of AS in mice was shown to elicit macro-
phage activation and T-cell responses that lead
to exacerbated nigrostriatal degeneration (Ben-
ner et al. 2008). Interestingly, recent in vivo stud-
ies in an AAV–ASmouse model showed that AS
nitration induces loss of neurons and increased
cell–cell transfer of AS pathology (Barrett and
Timothy Greenamyre 2015; Musgrove et al.
2019).

K. Vekrellis et al.
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Studies using label-free single molecule de-
tection methods, as well as recombinant acety-
lated AS, have shown that an amino-terminal
acetylation has a protective effect, as it can sig-
nificantly decrease oligomerization (Iyer et al.
2016; Bu et al. 2017). Bell et al. (2023) studied
five amino-terminal acetylated familial variants
(A30P, E46K, H50Q, G51D, and A53T) of AS
and found that each variant responds to amino-
terminal acetylation in unique ways, highlight-
ing the great complexity of the behavior of AS
and its high susceptibility to chemical modifica-
tions (Bell et al. 2022, 2023). In general, acetyla-
tion reduces the oligomerization capacity of AS,
as well as the rate of fibril formation.

Truncation

Studies indicate a strong link betweenCT-AS and
its aggregation. CT-AS is present in the brain and
colon of PD patients and has increased ability to
form fibrils and increased toxicity. Blocking car-
boxy-terminal truncation using antibodies to the
carboxyl-terminus of the protein in an AS trans-
genic animal model reduced PD symptoms and
reversed AS accumulation (Games et al. 2014).
However, in vitro and in vivo studies with CT-
AS fibrils have produced mixed results, with
some reporting increased capacity to induce pri-
on-like seeding of full-lengthASbyCTfibrils and
others observing a decreased ability compared to
WTAS fibrils (Sorrentino andGiasson 2020;Oh-
gita et al. 2022). It is possible that these contro-
versies may stem from the different length of
truncated forms used in the different studies.

Sumoylation, Ubiquitination

Impairment of AS SUMOylation in vitro by mu-
tations of SUMO residues increased its aggre-
gation propensity and neuronal toxicity. Inter-
estingly, increased SUMOylated AS has been de-
tected in PD brains (Rott et al. 2017; Rousseaux
et al. 2018). Verma et al. (2020) showed in cellular
models that SUMOylation is neuroprotective
against MPP+ or AS PFFs. Similar results were
obtained in vivo. Other reports show that SU-
MOylation competes with ubiquitination of AS,
thus potentially blocking ubiquitin-dependent

degradation pathways. Increased SUMOylation
also increased extracellular AS levels and its as-
sociation with exosomes. It is, therefore, possible
that SUMOylation may in this way affect the
spreading of AS between cells (Kunadt et al.
2015; Stuendl et al. 2016). A number of studies
have shown that ubiquitination by ligases such as
Nedd4 enhanced the protein’s clearance through
an endosomal–lysosomal pathway (Liani et al.
2004; Tofaris et al. 2011); however, recent in vitro
and in vivo ubiquitination studies have suggested
that AS ubiquitination may promote the produc-
tion of aggregated forms (Rott et al. 2017; Zhang
et al. 2017; Wang et al. 2019). In contrast, the in
vitro ubiquitination of WT AS at different sites
was found toproduce structurally different aggre-
gates but with reduced aggregation ability (Moon
et al. 2020).

O-GlcNAcylation

The O-GlcNAcylation of AS decreases its aggre-
gation propensity and toxicity in cultured pri-
mary neurons without affecting its membrane
binding affinity (Marotta et al. 2015; Levine et
al. 2017). Moreover, O-GlcNAcylation hampers
the cleavage of AS by calpain in vitro, a process
involved in the formation of aggregates. It is pos-
sible that O-GlcNAc could similarly inhibit the
cleavage of AS by as yet unidentified proteases
that generate aggregation-prone protein frag-
ments. In addition, pharmacological inhibition
of glycoside hydrolase O-GlcNAcase (OGA)
(which thus increases O-GlcNAcylation) blunts
ASPFF cellular uptake (Tavassoly et al. 2021) and
alleviates the degeneration and pathology in do-
paminergic neurons caused byASoverexpression
in an AAV mouse model (Lee et al. 2020). Sim-
ilarly, small inhibitors to OGA after daily dosing
improved motor impairment, reduced astroglio-
sis, and facilitated dopamine neurotransmission
in mouse modes of PD (Permanne et al. 2022).

PATHOGENIC EFFECTS OF α-SYNUCLEIN IN
VARIOUS CELLULAR COMPARTMENTS AND
FUNCTIONS

AS has a pathogenic potential within neurons
and possibly astrocytes in the context of LB dis-
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eases, and this may occur by aberrant effects at
various cellular sites. Due to its predominant
localization in presynaptic terminals and its
physiological role at the synapse, major efforts
have been undertaken to characterize its patho-
genic role at synaptic terminals (Fig. 2); however,
other aberrant cellular effects are also considered
(Fig. 3).

α-Synuclein at the Synapse: a Love
and Hate Affair

Among its multiple functions, the physiological
role of AS in SV homeostasis and neurotrans-
mitter release, as well as its aberrant effects on
synaptic transmission and SNARE complex as-
sembly, are the most well-documented (Scott
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Synaptic vesicle
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Loss of presynaptic

proteins

and SNARE complex

dysfunction

Cytosolic

DA

Postsynaptic neuron
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neuronal death
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Figure 2. The pathological effects of α-synuclein (AS) at the synapse. (A) Aggregated AS reduces the activity of
tyrosine hydroxylase (TH), the enzyme responsible for catalyzing the conversion of L-tyrosine to L-DOPA, thus
impairing dopamine biosynthesis. (B) Increased levels of AS inhibit VMAT2, which is responsible for the uptake
of monoamines transmitters (such as dopamine) into SVs; therefore, it modulates the neurotransmitter storage.
(C) Disease-related AS conformations alter the levels of presynaptic proteins and evoke SNARE complex
dysfunction, interfering with the SV fusion and dopamine release. (D) AS aggregates trigger dopamine trans-
porter (DAT) recruitment to the plasma membrane, leading to increased entry of dopamine and increased
cytosolic dopamine levels, which may be neurotoxic by facilitating further protein aggregation through the
generation of dopamine-modified AS adducts. (E) Aberrant AS conformations may affect the activity of do-
pamine receptors and voltage-gated calcium channels (VGCCs), as well as promote the formation of ion-
permeable pores in the plasma membrane; this may lead to intracellular Ca2+ overload and calpain activation,
facilitating further protein aggregation and triggering a Ca2+-dependent signaling cascade leading to neuronal
demise.
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et al. 2010; Gao et al. 2023). PD-linked muta-
tions, as well as aberrant AS conformations may
exert pathological effects at the presynaptic ter-
minal, including loss of presynaptic proteins
(Chung et al. 2009), redistribution of SNARE
proteins and impairment of neurotransmitter
release (Garcia-Reitboeck et al. 2010), and inhi-
bition of SV recycling pool size and mobility

(Nemani et al. 2010). At the presynaptic termi-
nal, AS can exist both in a cytosolic and a mem-
brane-bound form, and this localization may
alter the propensity for aggregation. Membrane
binding seems to exert a protective effect against
aggregation, based on observations that some
PD-linked AS missense mutations may inhibit
this (Jo et al. 2002; Fares et al. 2014; Ghosh et al.

Pathological AS
conformations

: Wild-type α synuclein

: PD-linked mutant  synuclein

: pSer129 or dopamine-modified AS

: LAMP2A

: Autophagic vacuoles (AVs)

: α-Synuclein aggregates

D Cytoskeleton

B Mitochondria�Ψm

ROS

E Lysosome

L
A

M
P

2
A

L
A

M
P

2
A

C ER-Golgi

F Proteasome

A Nucleus

• Histone and DNA
modification

• RAR, PPAR
activation

ER stress

UPR

Ca2+ release

Ca2+ release

Ca2+ release

ROS

Figure 3. Aberrant effects of disease-related α-synuclein (AS) conformations (aggregated, dopamine modified,
and phosphorylated) on the various cellular functions/compartments. (A) Within the nucleus, AS inhibits
histone acetylation via its direct binding to histones or by inhibiting the action of histone acetyltransferase
enzymes, thus interfering with the process of gene transcription. Through interaction with RA and peroxisome
proliferator–activated receptors (PPARs), AS can alter Nurr1 transcription, thus affecting dopaminergic neuron
survival. (B) AS mutations of aggregated species can transiently and dynamically engage with mitochondria,
causing their depolarization, reduced energy production, fragmentation, and destruction through mitophagy.
(C) Within the endoplasmic reticulum (ER), pathological AS assemblies can induce ER stress and unfolded
protein response (UPR), impairment of Ca2+ homeostasis, and alterations in the vesicle-dependent protein
trafficking, the latter affecting the ER–Golgi protein transport. (D) Aggregated AS may affect the structure
and function of the neuronal microtubule cytoskeleton (through interaction with actin and tubulin), leading
to axonal transport defects. (E) Disease-related conformations of ASmay impair chaperone-mediated autophagy
(CMA) activity through aberrant interaction with the LAMP2A receptor, as well as macroautophagic activity,
affecting the formation of autophagosomes or theirmaturation and fusionwith the lysosome. (F ) Increased levels
or pathological forms of ASmay inhibit proteasomal function, thus leading to AS accumulation and formation of
insoluble protein aggregates.
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2014; Liu et al. 2021). Other reports, however,
suggest the opposite (Lee et al. 2002; Perni et al.
2017; Limbocker et al. 2021). This controversy
may reflect the coexistence of monomeric and
oligomeric membrane-bound species that accel-
erate further the protein aggregation thus exert-
ing a neurotoxic function. It has been also found
that AS oligomers are preferably bound to syn-
apsin 1 and VAMP2 (Betzer et al. 2015) and
attenuate SNARE complex assembly. Intrigu-
ingly, recent findings support a rather physio-
logic role for the pathology-related pSer129
phosphorylated AS at synapses, advocating a
model where activity-induced pSer129-AS trig-
gers the interaction of AS with a network of
synaptic proteins that eventually leads to phys-
iologic attenuation of neurotransmitter release
(Parra-Rivas et al. 2023).

Not only the conformation but also the pro-
tein dosage may alter the vesicle recycling and
docking, as both gain- and loss-of-AS function
can impair SV recycling. AS is expressed in all
presynaptic terminals; however, in PD, dopami-
nergic neurons are the most vulnerable, possibly
because AS regulates dopamine synthesis and
turnover by altering the activity of critical com-
ponents of the pathway, such as TH, DAT, and
VMAT2 (Calabresi et al. 2023a,b). Differences
between neuronal subtypes and neurotransmitter
systems affected in early (norepinephrinergic, se-
rotonergic, cholinergic) or late (dopaminergic)
stages of the disease may also account for the
differential vulnerability to AS-related synaptop-
athy. Common features between these neurons
are prominent calcium currents, low intrinsic cal-
cium buffering capacity, sustained spontaneous
spiking, and broad spikes (Surmeier and Schu-
macker 2013).

Furthermore, a great wealth of data spanning
from primary neuronal cultures, iPSC-derived
neurons, and animal PD models, pinpoints a
pathogenic effect of aggregated AS (established
by overexpression of the WT or PD-linked AS
mutations or PFF inoculation) on the levels of
presynaptic proteins, such as SNAPs, VAMP2,
Synapsins, Syntaxins, Synaptotagmins, Synapto-
physin, SV2, PSD95, GAP42, Drebrin, Neurogra-
nin, Rabphilin 3A, and neurotransmitter release
(for review, see Murphy and McKernan 2022).

Animal studies using AS knockout (KO) and
overexpression models cement further a critical
role of the protein in the regulation of dopamine
homeostasis. In particular, increased dopamine
release and decreased reuptake, low striatal TH
and DAT levels and a reduced number of nigral
dopaminergic neurons have been reported in AS
KO mice (Abeliovich et al. 2000; Chadchankar
et al. 2011), although AS deletion was not shown
to alter cytosolic dopamine levels (Mosharov et al.
2009). On the other hand, AS aggregates are re-
ported to perturb dopaminergic neurotransmis-
sion and induce presynaptic and postsynaptic
dysfunction, possibly through interactions with
oxidizedDA that facilitates further protein aggre-
gation, through the generation of dopamine-
modified protein adducts (Conway et al. 2001;
Mor et al. 2017). Human AS overexpression
evoked dopaminergic terminal loss (Masliah
et al. 2000), deficient dopamine release, and al-
tered SV distribution (Janezic et al. 2013), as well
as defective DAT function (Lundblad et al. 2012).
Exposure of neurons to AS oligomers increases
Ca2+ intracellular levels resulting inmitochondria
and ER stress, reactive oxygen species (ROS) pro-
duction, and increased DA release, thus initiating
a toxic cascade leading to neurodegeneration
(Calabresi et al. 2023a,b). Finally, decreased levels
of synaptic proteins and alterations in SNARE
complex assembly correlating with duration of
dementia have been also reported in human PD
postmortemmaterial (Mukaetova-Ladinska et al.
2013; Vallortigara et al. 2016), thus underscoring
AS-mediated deregulation of synaptic neuro-
transmission.

Pathogenic Effects of α-Synuclein: Impact
on the Nucleus

Following the first observation of AS localiza-
tion in the nuclear envelope of the Torpedo elec-
tric organ (Maroteaux et al. 1988), studies have
reported on the presence of AS in the nucleus,
even though its function in this compartment is
only partially understood. Nuclear AS is impli-
cated in the regulation of gene transcription
through direct binding either to naked DNA
or to enzymes involved in transcription such
as methyltransferases, histone deacetylases,
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RNA-interacting proteins, and histones (So-
mayaji et al. 2021).

Chromatin immunoprecipitation coupled
with next-generation sequencing (ChIP-seq)
confirmed that the ability of AS to directly bind
to supercoiled DNA alters DNA conformation
and stability and affects gene expression (Hegde
and Rao 2007; Pinho et al. 2019). Further, AS can
directly interact with the nucleus-resident DNA
methyl transferase 1 forcing its export in the cy-
tosol, thereby causing DNA hypomethylation
that increases the expression of various genes,
including SNCA itself (Desplats et al. 2011). AS
can also bind histone 3 (H3) reducing its acety-
lation, which in turn results in inhibition of gene
expression through a disturbance in the balance
between histone acetylation and deacetylation
(Kontopoulos et al. 2006; Outeiro et al. 2007;
Paiva et al. 2017). In addition, AS can interfere
with histone methylation; for example, it can
enhance histone lysine N-methyltransferase 2
(EHMT2) activity, decreasing the expression of
genes regulated by the REST complex (Sugeno
et al. 2016). Finally, AS can impact nuclear recep-
tor-mediated transcription indirectly via its inter-
action with retinoic acid (RA). The AS-RA com-
plex translocates to the nucleus, where it activates
the RAR and PPAR nuclear receptors and down-
regulates the orphan receptor, Nurr1, through
mobilization of their respective response ele-
ments (Yakunin et al. 2012; Volakakis et al.
2015; Davidi et al. 2020). These effects, given
the role of Nurr1 in the development and main-
tenance of dopaminergic neurons, could be
detrimental.

Pathogenic Effects of α-Synuclein at the
Mitochondria

AS has a cryptic mitochondrial targeting se-
quence and has been reported to localize to mi-
tochondria and influence mitochondrial dynam-
ics (Devi et al. 2008; Parihar et al. 2008;Nakamura
et al. 2011). However, other reports have demon-
strated both in vitro and in brains thatAS does not
directly localize in mitochondria but rather asso-
ciates with mitochondrial-associated ER mem-
branes (MAMs). This interaction is reduced by
pathogenic AS mutations, leading to mitochon-

drial fragmentation (Cooper et al. 2012; Guardia-
Laguarta et al. 2014). AS monomers interact with
mitochondria and regulate mitophagy events of
fusion and fission, as well as transport and degra-
dation of mitochondria (Lurette et al. 2023). In
particular, AS promotes mitochondrial fission
events and inhibits fusion through the activity of
mitofusins. Treatment of isolated brain mito-
chondriawithmonomeric AS leads to an increase
inATP production through association of AS and
the α-subunit of ATP synthase, suggesting a role
ofmonomericAS as amitochondrial bioenergetic
regulator (Ludtmann et al. 2018). AS oligomers
interact with high affinity with important mito-
chondrial proteins likeVDACandTOM,proteins
required for mitochondrial protein import, lead-
ing to their internalization and disruption of
mitochondrial function (Guardia-Laguarta et al.
2014; Di Maio et al. 2016). In related research,
Bérard et al. (2022) used an optogenetic system to
manipulate and monitor AS aggregation in cells.
They discovered that AS aggregates transiently
and dynamically engagewithmitochondria, caus-
ing their depolarization, reduced energy produc-
tion, fragmentation, and destruction through
mitophagy, which is dependent on cardiolipin
externalization (Bérard et al. 2022). Furthermore,
postmortem studies of PD brains showed that
aggregated S129-phosphorylated AS preferential-
ly binds to mitochondria (Wang et al. 2019).
Treatment of primary neurons with AS fibrils
caused the appearance of phosphorylated AS in-
clusions that appeared associated with the mito-
chondrial membrane, leading to cytochrome C
release, and oxidative stress (Prots et al. 2018).
Aggregates produced in iPSC-derived neurons
bearing AS triplication were shown to promote
the opening of osmotic transition pore, causing
mitochondrial swelling, ultimately leading to neu-
ronal death (Ludtmann et al. 2016). An additional
point is that mitochondrial transport and func-
tion may be compromised in the process of the
maturation of AS fibrils into LB-like structures
(Mahul-Mellier et al. 2020). Cumulatively, these
data support the idea that metabolism and func-
tion of healthy neurons may depend on the crit-
ical interplay between AS and mitochondria
(Risiglione et al. 2021). Therefore, targeting
the aberrant mitochondrial localization of AS
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aggregates may prove beneficial for α-synucle-
inopathies.

Pathogenic Effects of α-Synuclein: Impact
on the ER, Golgi, and Relevant Trafficking

The pathogenic effects of AS on the endoplas-
mic reticulum (ER) include induction of ER
stress and unfolded protein response (UPR), im-
pairment of Ca2+ homeostasis, and alterations in
the vesicle-dependent protein trafficking. The
UPR can be initiated by three different ER-res-
ident stress sensors, inositol-requiring enzyme
1α (IRE1α), PKR-like ER kinase (PERK), and
activating transcription factor 6 (ATF6) (Manie
et al. 2014). In the absence of ER stress, these
proteins remain in an inactive form through
binding to BiP, a chaperone protein that acts
as a detector of nonproperly folded proteins.
Mutated or aggregated AS can penetrate the
ER membrane, inducing morphological
changes to the ER and binding to BiP (Bellucci
et al. 2011; Colla et al. 2012; Gorbatyuk et al.
2012). This promotes the dissociation of BiP
from IRE1α, PERK, and ATF6, which then ac-
tivate a series of cascade reactions directed to
preserve cellular proteostasis; however, overre-
action may lead to cell death. UPR activation
seems to be a major contributor of AS-related
cytotoxicity since ER stress markers, such as BiP
or p-PERK, are increased in brain material from
PD patients (Conn et al. 2004) and genetic or
pharmacological targeting of UPR components
are beneficial in preclinical models of PD (Colla
et al. 2012; Martinez et al. 2019; Siwecka et al.
2023). The fact that BiP overexpression in vivo
can resolve ER stress and protect from AS-in-
duced cytotoxicity (Gorbatyuk et al. 2012) fur-
ther highlights the importance of the BiP–AS
interaction in the initiation and maintenance
of the UPR and downstream detrimental effects.
ER stress conditions can further potentiate AS
aggregation feeding a vicious cycle linking AS
pathology and ER dysfunction (Jiang et al.
2010; Bellucci et al. 2011).

AS can also interact with vesicular traffic
components within the ER affecting ER to Golgi
protein transport. The first observation of abnor-
malities in ER-dependent vesicular traffic came

from studies in yeast where overexpression ofAS-
induced inhibition of vesicle docking to and fu-
sion with the Golgi membrane, which was res-
cued by overexpression of Rab family members
such as Rab1, Rab3A, and Rab8A, suggesting
that, except from the ER-Golgi route, AS could
impair other steps of the secretory pathway
(Cooper et al. 2006; Gitler et al. 2008). Vesicular
trafficking is finely orchestrated by intracellular
calcium. Aggregated AS can directly bind to
SERCA; this interaction distorts ER Ca2+ levels,
interferes with intracellular Ca2+ homeostasis,
and compromises vesicle targeting and fusion
(Betzer et al. 2018; Kovacs et al. 2021). Impor-
tantly, alterations in ER to Golgi and vesicular
trafficking occur in the process of LB-like struc-
ture maturation and may be responsible for the
breakdown of cellular homeostasis (Mahul-Mel-
lier et al. 2020).

Pathogenic Effects of α-Synuclein on the
Cytoskeleton

It is notable that in the process of LB-like inclu-
sion formation following AS PFF application and
seeding in primary neuronal cultures, neuritic AS
aggregates closely apposed to cytoskeletal ele-
ments are formed first (Mahul-Mellier et al.
2020). AS may affect the structure and function
of the neuronal microtubule cytoskeleton, lead-
ing to axonal transport defects (Carnwath et al.
2018; Prots et al. 2018). High concentrations of
AS can also alter the actin cytoskeleton when
applied to hippocampal neurons, and can subse-
quently lead to disruption in neuronal functions,
including axonal growth and migration. Overex-
pression of AS in fly neurons increased F-actin
levels, promoted mislocalization of the mito-
chondrial fission proteins, and consequently led
to mitochondrial and autophagic-lysosomal dys-
function (Ordonez et al. 2018; Sarkar et al. 2021).
Recent data aided by superresolution imaging
approaches, revealed the close association of neu-
rofilaments and β-tubulin to pSer129 α-syn in
LBs of PD postmortem tissue (Moors et al.
2021). So far, however, there is no evidence to
support the hypothesis that AS is a true microtu-
bule associated protein (i.e., a protein able to bind
tubulin ormicrotubules and regulate their behav-
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ior). In addition, it is not yet known whether AS
binds tubulin directly or via as yet unidentified
binding partners.

A Reciprocal Relationship: Pathogenic Effects
of α-Synuclein on Protein Degradation
Systems

Limiting intracellularAS levels, aswell as its path-
ogenic effects on the function of the intracellular
proteolytic machineries represents an obvious
therapeutic approach for PD and related α-syn-
ucleinopathies. The manner of AS degradation
still remains controversial, with both the protea-
some (Bennett et al. 1999; Tofaris et al. 2001,
2011; Webb et al. 2003; Shabek et al. 2012) and
the lysosome (Paxinou et al. 2001; Webb et al.
2003; Sevlever et al. 2008; Vogiatzi et al. 2008),
contributing to AS clearance, in a conformation-,
PTM-, cell-type-, and tissue-specific manner
(Emmanouilidou et al. 2010a,b; Xilouri et al.
2013a, 2016a). Indicatively, soluble or relatively
insoluble (but not fully aggregated) S129-phos-
phorylated AS appears to be cleared by the pro-
teasome, whereas seeded aggregatedAS is cleared
by macroautophagy (Pantazopoulou et al. 2021).
It has been suggested that AS is degraded via the
proteasome under basal conditions in vivo,
whereas under conditions where intracellular
AS protein load is augmented, the lysosome takes
over (Ebrahimi-Fakhari et al. 2011).More recent-
ly, a de novo K45, K58, andK60 ubiquitination of
AS mediated by NBR1 binding and entry into
endosomes in a process that involves ESCRT I-
III for subsequent lysosomal degradation was
identified, using diverse approaches in living or
fixed cells (Zenko et al. 2023). This may be an
important pathway for a pool of AS, which is
rapidly turning over. We and others have found
thatWT-soluble AS, but not the A53T and A30P
mutants, or phosphorylated or dopamine-modi-
fied AS, is degraded, at least partly, via the chap-
erone-mediated autophagy (CMA) lysosomal
pathway (Cuervo et al. 2004; Martinez-Vicente
et al. 2008; Vogiatzi et al. 2008; Xilouri et al.
2009; Mak et al. 2010). Further supporting the
role of CMA on AS degradation are in vivo find-
ings showing that overexpression of CMA’s rate-
limiting step, the LAMP2A receptor, concurrent-

ly with human AS in the rat substantia nigra
(Xilouri et al. 2013b) and in theDrosophila brain
(Issa et al. 2018), was capable of mitigating AS
levels and alleviating AS-related toxicity. Con-
versely, CMA deficiency in the rat substantia ni-
gra through LAMP2Adown-regulation led to the
cytoplasmic accumulation of small AS aggre-
gates, signifying that CMA is responsible for AS
turnover within nigral dopaminergic neurons
(Xilouri et al. 2016b). Within the lysosome, ca-
thepsinD and cathepsin L have both been report-
ed to clear AS aggregates (Cullen et al. 2009; Bae
et al. 2014;McGlinchey and Lee 2015; Prieto et al.
2022).

An interrelated theme to AS degradation is
the impact of increased WT- or PD-linked mu-
tant protein load on the function of the protea-
some and the lysosome. Initial studies proposed
that the PD-linked A30P and A53T mutants
evoke proteasomal impairment (Stefanis et al.
2001; Tanaka et al. 2001; Petrucelli et al. 2002;
Snyder et al. 2003), although other studies failed
to detect such an effect (Martìn-Clemente et al.
2004). In addition to the cell and animal data,
reports in human postmortem material also sug-
gest that proteasome function is impaired in
sporadic PD patients (for review, see Cook and
Petrucelli 2009). Furthermore, many studies
highlight a central pathogenic role of aberrant
AS on endolysosomal function, focusing mostly
onmacroautophagy andCMA. Pathological con-
formations of AS (mutations, oligomeric/aggre-
gated species) have been reported to interfere
with different stages of autophagosome forma-
tion, maturation, trafficking, and fusion with
the lysosome (Xilouri et al. 2016b; Sanchez-
Mirasierra et al. 2022). Briefly, impaired macro-
autophagic activity has been initially reported in
in vitro and in vivo synucleinopathy models, in a
manner dependent on AS-Rab1a interaction
and Atg9 mislocalization (Winslow et al. 2010).
Early-stage autophagosome formation was im-
paired in the presence of both E46K- and A30P
PD-linked mutants, in a manner dependent on
JNK pathway (Yan et al. 2014; Lei et al. 2019),
whereas the A53T mutant protein exerted con-
tradictory effects onmitophagy (Chen et al. 2018;
Obergasteiger et al. 2018). Multiple lines of evi-
dence suggest that bulk AS aggregates disrupt
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endolysosomal trafficking events, including those
related to protein secretion partly via exosomes,
that impede furtherAS clearance, thus permitting
the persistence of pathological protein species
within neurons or glia cells, ultimately leading
to cell destruction (Klein and Mazzulli 2018). In-
triguingly, it has been proposed that AS secretion
via exosomes could act as a protectivemechanism
against the aberrant effects of AS on lysosomal
function (Fussi et al. 2018). In addition, aberrant
species or elevated levels of AS can have a detri-
mental effect on CMA function, likely through
excessive binding to Lamp2a, impeding the access
of other substrates to this rate-limiting compo-
nent of the pathway, and thus setting the stage
for a vicious cycle of pathogenicity (Cuervo et al.
2004; Xilouri et al. 2009, 2013a,b).

It is interesting to note here that, beyond
AS, the aberrant actions of multiple PD-linked
genetic defects, such as in LRRK2, VPS35,
ATP13A2, and β-glucocerebrosidase (GCase),
converge on the lysosome and are often accom-
panied by AS accumulation due to the ongoing
lysosomal impairment (Klein and Mazzulli
2018). In particular, multiple cell- and animal-
based studies propose the existence of a bidirec-
tional loop underlying the relationship between
GBA1 mutations, AS, and the lysosome (Smith
and Schapira 2022). It has been recently shown
that mutant GCase contains a CMA-targeting
motif and impairs the formation of the CMA
lysosomal translocation complex required to
translocate AS into CMA-active lysosomes for
degradation, thus providing a new link between
AS, CMA, and GCase (Kuo et al. 2022). Inter-
estingly, the protein levels of the CMA markers
LAMP2A and HSC70 are decreased in the hu-
man substantia nigra and amygdala of PDbrains
compared to controls (Alvarez-Erviti et al.
2010), and this reduction in LAMP2A levels cor-
related with increased AS accumulation selec-
tively in regions harboring AS pathology (Mur-
phy et al. 2014, 2015). Altered levels of LAMP2A
and/or HSC70 can be detected in peripheral
bloodmononuclear cells of sporadic PDpatients
(Wu et al. 2011; Sala et al. 2014; Papagiannakis
et al. 2015, 2019), suggesting that a systemic re-
duction in CMA activity may be present in PD
patients.

α-SYNUCLEIN AS A BIOMARKER FOR
SYNUCLEINOPATHIES

Many researchers have worked to establish AS-
based tools for the evaluation of AS in early stage
diagnosis, differential diagnosis of PD from other
parkinsoniandisorders, and assessment of disease
progression (Chopra andOuteiro 2024). This top-
ic has exploded in recent years, and a full account-
ing is beyond the scope of the current review.

The fact that AS is present in other tissues
except the CNS complicates the interpretation of
alterations in the levels of the protein. CSF total
AS has been quantified using different immu-
noassays, and the results were controversial
ranging from no difference (Mollenhauer et al.
2011; Toledo et al. 2013; Hansson et al. 2014) to
a significant decrease observed in PD patients
compared to controls (Hall et al. 2012; Kang
et al. 2013; Parnetti et al. 2014). This decrease
likely reflects the entrapment of soluble intersti-
tial AS within LBs and related aggregates in a
manner akin to β-amyloid deposition and relat-
ed low CSF β-amyloid in AD. The magnitude of
the decrease observed is quite low, ∼10%–15%,
weakening the ability of the assay of total AS in
CSF to distinguish PD from controls. The mea-
surement of CSF oligomeric and phosphorylat-
ed species has also been pursued. Both conform-
ers were found to be significantly increased in
the CSF of PD patients and the oligomer-to-
total AS ratio could differentiate PD subjects
from controls with higher sensitivity and specif-
icity compared with total AS (Park et al. 2011;
Wang et al. 2012; Parnetti et al. 2014; Stewart
et al. 2015); yet, these assays have not provided
enough separation between PD and controls to
be useful as diagnostic biomarkers.

The levels and species of AS have also been
examined in other more easily accessible body
fluids or tissues. Even though the major source
of AS in blood is erythrocytes, most of the work
so far has focused on plasma or serum AS. The
results from these studies are varied, showing
either increased, unaltered, or even decreased
levels of AS, highlighting the importance of
technical confounders in biological samples
with high constituent complexity such as plas-
ma or serum (Duran et al. 2010; Foulds et al.
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2013; Shah et al. 2017). In contrast, in studies
where aggregated or total AS was quantified in
erythrocyte membranes, the results have consis-
tently shown a significant increase in PD sam-
ples compared to healthy controls or other re-
lated disease groups (Papagiannakis et al. 2018;
Abd Elhadi et al. 2019; Li et al. 2021).

Considering that AS conformers are pack-
aged in EVs, which can facilitate disease propa-
gation in the brain, recent studies assessing neu-
ronal cell-adhesion molecule LCAM1-positive
EVs isolated from blood or saliva reported sig-
nificantly higher levels of EV-associated total AS
in PD (or even in prodromal PD) compared to
controls, a difference that could not be observed
in plasma samples from the same groups (Cao
et al. 2019; Jiang et al. 2020; Yan et al. 2024).
Assessment of pathological aggregated AS in
this material may even lead to higher sensitivity
and specificity (Kluge et al. 2022).

Another relatively easily accessible material
is skin. Skin biopsies have been used mainly as
material for immunohistochemistry with anti-
bodies against altered conformations of AS, in
particular phosphorylated AS. Such assays have
shown high specificity and sensitivity and dis-
criminatory ability compared to controls or
non-LB-related parkinsonism (e.g., in Donadio
et al. 2014), but results in other studies have been
variable, largely likely due to methodological
issues. This has culminated in a large multicen-
ter study that clearly established the very high
specificity and sensitivity (over 90% for both) of
this qualitative assay for differentiating synucle-
inopathies from controls (Gibbons et al. 2024).

New technological advances have changed
our perspective of measuring AS in biofluids. In
vitro detection methods in biological material
now include conformer-specific immunoassays
and electrochemical biosensors (Chen et al.
2022), as well as complex methods based on the
addition of recombinant AS and its seeding by
relevant biological material, such as CSF. These
latter assays that originated as separate methods
termed protein-misfolding cyclic amplification
(PMCA) (Jung et al. 2017; Nicot et al. 2019),
and real-time quaking-induced conversion (RT-
QuIC) (Fairfoul et al. 2016; Nakagaki et al. 2021;
Huang et al. 2024), have converged on seed

amplification assays (SAAs) (Concha-Marambio
et al. 2023; FernandesGomes et al. 2023; Siderowf
et al. 2023), that have tremendously increased the
sensitivity and diagnostic accuracy of disease-re-
lated AS. Importantly, such assays in the CSF
clearly differentiate LB disease-afflicted patients
and related prodromal forms from controls and
non-LB-related parkinsonism. Beyond the diag-
nostic utility, such assays have sparked a great
degree of enthusiasm as they potentially reflect
the ongoing nervous system pathogenetic pro-
cess. However, the CSF SAA is difficult to imple-
ment and requires specialized equipment. At this
point, it is qualitative and does not reflect disease
progression; it is hoped that refinements of the
assay may lead to its further development along
these lines. In themeantime, efforts are underway
to transfer the success of SAA to more accessible
tissues, including skin and serum, among others.
An intriguing publication by Okuzumi et al.
(2023), in particular, suggests that serum AS
SAA may be very promising.

Another landmark in the field would be the
development of a PET tracer that could detect
abnormal conformations of AS in living patients,
as this would provide regional information, and
could be followed longitudinally and presumably
quantitatively, to provide, among others, mean-
ingful end points for disease-modifying clinical
trials. Converging information suggests that there
is hope for significant developments in this area
in the coming years. Already, Smith et al. (2023)
reported specific aberrantAS-targeted PET tracer
uptake in the cerebellum of MSA patients, and it
is hoped that similar approaches may be success-
ful in PD.

EMERGING CLINICAL TRIALS TARGETING
α-SYNUCLEIN IN PARKINSON’S DISEASE

Based on the idea that removal of pathogenic AS
species may be beneficial for PD and related syn-
ucleinopathies, a number of companies have em-
barked on clinical trials with the aim to decrease
such levels or inhibit the effects of such species
through the application of molecular strategies,
immunization, or small compounds. Immuniza-
tion strategies in particular entail both active and
passive immunization, with the latter being more
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advanced in terms of application in large clinical
trials. In 2022, two large studies in early PD using
different antibodies, with variable specificity to-
ward aggregated AS conformations, failed to
show a significant benefit (Lang et al. 2022; Pa-
gano et al. 2022), even though the used antibodies
bound completely monomeric AS in the periph-
ery and had shown ameliorating effects in rodent
animal models of synucleinopathy. These results
raised questions about the validity of the immu-
nization approach, and even the basic principle of
targeting pathogenic AS for the treatment of PD
(Whone 2022). As argued, however, by Jensen
et al. (2023), notwithstanding the rigorous nature
of the performed studies, various issues preclude a
hasty abandonment of similar approaches: The
execution of the animal studies on which the clin-
ical trials were based could be improved, in
particular regarding the temporal pattern of treat-
ment, to more closely reflect the human situation;
target engagement, in particular of the potentially
noxious oligomeric species within neurons, was
not demonstrated; it may be difficult to observe
motor benefits with neuroprotective strategies
even in early disease, as neurodegeneration is al-
ready quite advanced, while the progression of the
disease is generally quite slow, possibly necessitat-
ing studies of longer duration.With these notions
in mind, and taking into account the only very
recent partial success of similar β-amyloid-target-
ing strategies inAD, after decades of failures, there
is reason to believe that the conduct of further
clinical trials targeting AS, possibly in earlier dis-
ease stages, such as prodromal or even presymp-
tomatic, as in asymptomatic genetic synucle-
inopathies, will ultimately demonstrate efficacy
(Jensen et al. 2023). In fact, a preordained analysis
of a subset of PD patients with characteristics sug-
gesting more rapid progression appears to show a
very significant benefit with treatment in one of
the two clinical trials mentioned above (Pagano
et al. 2024), further reinforcing the notion that
anti-AS therapies may prove to be successful in
PD and related synucleinopathies.
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