
REVIEW

Looping forward: exploring R-loop processing and
therapeutic potential
Kalliopi Stratigi1 , Athanasios Siametis1,2 and George A. Garinis1,2

1 Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece

2 Department of Biology, University of Crete, Heraklion, Crete, Greece

Correspondence

K. Stratigi, Institute of Molecular Biology

and Biotechnology (IMBB), Foundation for

Research and Technology-Hellas, N. Plastira

100, Heraklion, Crete GR70013, Greece

Tel: +30 2810391072

E-mail: callina@imbb.forth.gr

Kalliopi Stratigi and Athanasios Siametis

contributed equally to this article

(Received 7 February 2024, revised 13 May

2024, accepted 20 May 2024, available

online 6 June 2024)

doi:10.1002/1873-3468.14947

Edited by Donata Orioli

Recently, there has been increasing interest in the complex relationship

between transcription and genome stability, with specific attention directed

toward the physiological significance of molecular structures known as R-

loops. These structures arise when an RNA strand invades into the DNA

duplex, and their formation is involved in a wide range of regulatory func-

tions affecting gene expression, DNA repair processes or cell homeostasis.

The persistent presence of R-loops, if not effectively removed, contributes to

genome instability, underscoring the significance of the factors responsible for

their resolution and modification. In this review, we provide a comprehensive

overview of how R-loop processing can drive either a beneficial or a harmful

outcome. Additionally, we explore the potential for manipulating such struc-

tures to devise rationalized therapeutic strategies targeting the aberrant accu-

mulation of R-loops.
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Transcription is far from a neutral coordination of

proteins toward the mechanical synthesis of RNA; the

enzymatic activities involved and the mechanisms that

ensure DNA accessibility paradoxically contribute to

genome instability, making gene expression a risky

endeavor. Besides the inherent mutagenesis associated

with transcription [1,2], DNA breaks induced to relieve

RNA polymerase-associated torsional stress or the risk

of transcription-replication conflicts, a necessary evil

that accompanies mRNA synthesis arises from the for-

mation of non-B DNA structures, such as R-loops.

R-loops are generated when a transcribed RNA strand

invades the DNA duplex and hybridizes with the tem-

plate DNA, forming an RNA–DNA hybrid and, at
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the same time, displacing the non-template DNA as a

single-stranded DNA (ssDNA). Such three-stranded

structures were originally thought to be merely

by-products of transcription, generated exclusively

in cis [3]; there is emerging evidence to suggest that

they can be formed in trans [4,5], while they also

exhibit regulatory functions. In addition, although

R-loops are instinctively considered to form behind

RNA polymerases, there is evidence to suggest that,

during backtracking (the backward shift of RNA poly-

merase along DNA), R-loops are also generated ante-

rior to the RNA polymerase complex [6]. While short,

transient RNA–DNA hybrids form continuously dur-

ing transcription or DNA synthesis of Okazaki frag-

ments [7], R-loops are distinct structures that form

throughout the cell cycle, span about 100–2000 base

pairs and occupy 5–10% of the genome [8,9]. They

have a tendency to form at sites with high GC-content

or GC-skew [10–12], a preference which extends their

influence beyond highly expressed genes, to encompass

repetitive genomic regions, centromeres, telomeres and

enhancers [12–14].
RNA–DNA hybrids and R-loops have recently

attracted attention for having roles in multiple physio-

logical processes, including gene expression regulation

and DNA repair [15–18]. Nevertheless, the failure to

promptly and effectively eliminate such structures

results in DNA breaks leading to genome instability.

For the detrimental effects of R-loops on genome

integrity, we refer the readers to the following reviews

[19,20]. Here, we discuss how processing of

co-transcriptional R-loops affects the outcome of gene

expression and cell homeostasis, with an emphasis on

the factors involved in their recognition, modification

or removal. We juxtapose the regulatory, beneficial

roles of R-loops, against the detrimental consequences

of their misregulation, while also considering the possi-

bility of R-loop manipulation for therapeutic

purposes.

Discerning the characteristics of physiological

and harmful R-loops

Since the earliest evidence of R-loop formation in

vitro, in 1976 [21], there have been numerous studies

mapping R-loops and investigating their biological

functions in different organisms [18,22]. Paradoxically,

besides the multiple cases where R-loop formation is

beneficial for fundamental cellular processes, they have

also been proven to be deleterious to cells. The distinc-

tion between R-loops with physiological (regulatory)

functions, formed either in specific genome loci or at

scheduled time-points (programmed) and spontaneous

(unscheduled) R-loops, which can have detrimental

consequences to the cell homeostasis, has raised many

questions on their biology [17,20].

R-loops occur naturally across the genomes of bac-

teria, yeast and all higher eukaryotes and are now con-

sidered to be more than byproducts of transcription

[9,12]. Comparison of results generated with different

R-loop mapping strategies has revealed major discrep-

ancies, especially in terms of size, sequence characteris-

tics and distribution of R-loops in the genome. For

example, depending on the technique [23–28], R-loops

are either mapped predominantly along transcribed

gene bodies and 30 gene terminal regions and at hot-

spots of GC-skewed promoters, or identified at G-rich

promoters and Transcription Start Sites (TSSs), possi-

bly constricted by the presence of auxiliary endoge-

nous protein factors, such as the ssDNA-binding

protein Replication Protein A (RPA).

Nevertheless, a general consensus emerging from R-

loop mapping approaches is their preference for GC-

rich or -skewed genic regions and their transient

nature. This dynamic characteristic of R-loops, besides

making the identification of their interacting factors

and occupancy sites (e.g. enhancer RNAs have short

half-lives) very challenging, also highlights detrimental

implications for genome stability, in the case of other

more stable or persistent hybrids, or R-loops occurring

at non-scheduled times or at aberrant sites [29]. It has

been suggested that the threat to genome stability is

derived from a secondary event and not the R-loop

itself [20]. This is supported by evidence that describe

specific histone mutants that accumulate R-loops with-

out concurrent DNA damage accumulation [30]. Cur-

rent research only describes R-loops as harmful in the

context of aberrant genetic modifications and disorders

or in the presence of exogenously added agents that

influence the transcription process. Although any dis-

cernible molecular features of such harmful R-loops

have not been defined yet, a subset of partially RNase

H-resistant RNA–DNA hybrids were recently

identified, whose characteristics may well explain the

secondary features of an intrinsically (un)stable R-

loop [31].

In principle, the structure of an R-loop poses a sig-

nificant threat for genome stability, as the displaced

ssDNA strand is open to exogenous and endogenous

DNA damaging agents and can be a substrate for

nucleases and DNA modifying enzymes. A nick in the

DNA can be further processed into a DNA double-

strand break (DSB), making R-loops a source of

DNA damage, while, at the same time, they have the

potential to block replication fork progression, causing

collisions with the transcription machinery. To this
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end, cells have developed protective measures to secure

the fine balance of R-loop formation and resolution;

RNA export/processing factors [32] and DNA topoi-

somerases prevent their formation, RNA helicases [33]

and RNases remove them, and nucleases [15] promote

DNA repair (Table 1).

Intriguingly, the very same structure of R-loops that

makes them a threat to genome integrity is also

responsible for their regulatory functions. The first

described example of biologically important regulatory

R-loop formation highlights their transcription-

induced contribution in immunoglobulin class-switch

recombination (CSR), during B cell activation [34].

Indeed, it is accepted that high transcription rates

increase the likelihood of co-transcriptional formation

of R-loops [9]. In CSR, R-loops form co-

transcriptionally at the G-rich switch region of the

IgH locus. Cytosine residues in the displaced

non-template ssDNA are then deaminated by

Activation-Induced cytidine Deaminase (AID), con-

verted to uracils and processed by factors of the Base

Excision Repair (BER) and Mismatch Repair path-

ways, to generate DNA nicks and double-strand

breaks (DSBs), respectively. The production of the dif-

ferent Ig types, vital for the immune response, is only

possible through the consequent end joining of these

DSBs. Yet, although the connection of RNA polymer-

ase elongation rates with R-loops suggests that high

gene expression levels promote R-loop formation, in

line with rRNA and tRNA loci and multiple context-

specific studies, it is widely established that R-loops

are also potent inhibitors of RNA polymerases, lead-

ing to stalling and transcription inhibition [35].

This contradictory dual nature of R-loops is the

focus of ongoing investigation [36], and a major chal-

lenge in the field is to dissect the phenotypes that

result directly from R-loops, or from impaired tran-

scription elongation-associated processes, like mRNA

splicing, methylation or export. Besides the specific R-

loop processing events described here, the possibility

of a context-dependent R-loop biology and structure

would be intriguing and could explain their different

functions.

Physiological roles of R-loops during
DNA-templated transactions

Linking R-loop processing to gene expression

outcomes

In addition to their structure, the sequence specificity

of RNA–DNA hybrids allows R-loops to either attract

and precisely target proteins on particular

chromosomal regions or inhibit the binding of cofac-

tors. For example, R-loops have been linked to the

protection of CpG islands against DNA methylation,

both by repelling DNA methyltransferases and by

recruiting H3K4 methyltransferases, which results in

chromatin decondensation and transcription activation

[12,37,38]. This renders R-loops ideal candidates for

gene expression and chromatin organization regula-

tion. The fact that such structures occupy ~ 10% of

the genome and are found primarily in genic regions,

at promoters and termination sites, further supports

this role.

R-loop-associated transcription activation has been

linked to activating histone marks, such as mono- and

tri-methylation of lysine 4 of histone H3 (H3K4me1/3)

and H3 acetylation (H3K27ac), or to elongation

marks, like the tri-methylation of lysine 36 of histone

H3 (H3K36me3) [12,39]. Moreover, in the case of the

vimentin (VIM ) gene, transcription activation occurs

when the antisense long non-coding RNA (lncRNA)

VIM-AS1 forms an R-loop downstream of the VIM

TSS, which attracts activators of the NF-jB pathway

[40]. In a similar fashion, the lncRNA TARID-

generated R-loop recruits the stress response protein

GADD45A and the methylcytosine dioxygenase TET1

on the promoter of the TCF21 tumor suppressor gene,

for demethylation and transcription activation [41].

Additionally, R-loop-directed, CTCF-mediated DNA

looping has recently been shown to induce transcrip-

tion in mouse embryonic fibroblasts [42]. On the other

hand, R-loops have also been shown to induce tran-

scriptional repression. For instance, in Arabidopsis

thaliana, the binding of the ATNDX transcription

factor on the displaced ssDNA strand stabilizes an R-

loop on the COOLAIR promoter, resulting in tran-

scription silencing [43]. Similarly, transcription repres-

sion of the RASSF1A promoter and a subset of mouse

embryonic stem cell (mESC) developmental genes is

achieved by the R-loop-directed recruitment of the

Polycomb Repression Complex 2 (PRC2) [44]. In con-

trast, a different study has shown that the formation

of R-loops leads to the antagonistic recruitment of the

histone acetyl-transferase complex TIP60-p400, over

PRC2 binding, in promoter regions of mESCs [45].

These results strongly indicate that the role of R-loops

as effectors of epigenetic and transcription regulation

depends on the specific context and could be differen-

tially modulated by their stabilization or resolution.

Proteins that bind the displaced ssDNA strand of R-

loops may either stabilize the R-loop structure, as in

the case of ATNDX [43], or they can facilitate the

consequent recruitment of chromatin-modifying

enzymes or transcription factors. RPA, for example, is
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Table 1. Protein factors involved in R-loop regulation and function.

Molecular function Protein factor Associated disease Proposed mechanism/process References

Topoisomerases

Topoisomerase TOP1, TOP2 Cancer Prevention of negative

supercoiling, replication

stress

[42,84,202–205]

Topoisomerase TOP3B/TDRD3 Multiple Myeloma Burkhitt’s

Lymphoma

R-loop resolution [179,206]

Nucleases

Ribonuclease RNase H1 Cancer, Mitochondrial

Encephalomyopathy, Chronic

Progressive External Ophthalmoplegia

(CPEO)

R-loop resolution [207–209]

Ribonuclease RNase H2 Aicardi-Gouti�eres Syndrome (AGS) R-loop resolution [154,210–212]

Ribonuclease DICER Cancer, DICER1 syndrome R-loop resolution [57,213]

Ribonuclease XRN2 R-loop resolution, transcription

termination

[56,60,214,215]

Endonuclease XPF, XPG Xeroderma Pigmentosum (XP), chronic

pancreatitis

R-loop processing [42,51,53]

Endonuclease FEN1 Lung and gastrointestinal Cancer Trinucleotide repeat deletion in

R-loops

[216]

ssDNA nuclease SAMHD1 Aicardi-Gouti�eres Syndrome (AGS) R-loop resolution, tumor

suppressor

[155,212]

ssDNA nuclease TREX1 Aicardi-Gouti�eres Syndrome (AGS) R-loop resolution [212,217]

Helicases

Helicase SETX Amyotrophic Lateral Sclerosis type 4

(ALS4), Ataxia with Oculomotor

Apraxia type 2 (AOA2)

R-loop resolution [37,56,122,218]

Helicase/mRNA

splicing

AQR R-loop resolution, DSB repair

by HR

[53,219]

Helicase DHX9 R-loop formation/resolution,

transcription termination

[58,220]

Helicase DDX5 Cancer R-loop resolution, transcription

termination

[83,221]

Helicase DDX21 Spinal Muscular Atrophy (SMA) R-loop resolution [222,223]

Helicase DDX17 Cancer R-loop formation/resolution [33,224]

Helicase DDX1 Retinoblastoma, neuroblastoma R-loop formation/resolution [225,226]

Helicase DDX41 Myelodysplastic syndrome (MDS),

Acute myeloid leukemia (AML)

R-loop suppression, tumor

suppressor

[227]

Helicase, DNA repair BLM Bloom’s syndrome, cancer R-loop resolution [228]

Helicase,

transcription

RECQL5 Transcription elongation,

R-loop suppression

[229]

Helicase,

exonuclease

WRN Werner syndrome R-loop resolution [230,231]

Translocase/DNA

repair

FANCM ALT-dependent cancer R-loop resolution [232]

Helicase RTEL1 G4 binding on TERRA for

R-loop resolution

[233,234]

Nucleic acid binding

ssDNA binding AID Immunodeficiency, cancer Deaminates cytosine residues

in the ssDNA

[235,236]

ssDNA binding RPA R-loop formation/resolution [46,47]

ssDNA binding RAD51 R-loop formation [237,238]

RNA binding EWS-FLI1/

EWSR1

Ewing’s sarcoma R-loop formation/suppression [137]

DNA/RNA binding TDP-43/FUS Amyotrophic Lateral Sclerosis (ALS),

Frontotemporal Dementia (FTD)

R-loop suppression, replication

stress

[239–241]
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required for the stabilization of the ssDNA strand and

also promotes R-loop formation [46], but can also

recruit RNase H1 for their resolution [47]. Likewise,

AID initiates the resolution and repair of R-loops in

CSR [34]. Interestingly, however, AID deficiency leads

to genome-wide hypermethylation [48], suggesting

Table 1. (Continued).

Molecular function Protein factor Associated disease Proposed mechanism/process References

DNA binding WASp Wiskott-Aldrich syndrome R-loop suppression, regulates

RPA ssDNA binding

[242,243]

DNA binding, repair RAD52 R-loop processing for DNA

repair

[72]

DNA binding, repair BRCA1/2 Breast and ovarian Cancer R-loop formation/suppression,

recruited on R-loops for DNA

repair

[244,245]

DNA binding, repair FANCA-W Fanconi Anemia R-loop suppression by ssDNA/

RNA binding

[196,246]

RNA processing

mRNA processing/

export

THO/TREX-2

complex

Hyperrecombination, sarcoma Transcription elongation,

mRNA export

[35,244,247,248]

Splicing factor U2AF1/2 Myelodysplastic syndrome (MDS) Recruited by R-loops for co-

transcriptional pre-mRNA

splicing

[64,249]

Splicing factor SRSF1/2 NASH, Myelodysplastic syndrome

(MDS)

R-loop suppression [250,251]

RNA editing ADAR1 Aicardi-Gouti�eres syndrome (AGS),

cancer

R-loop regulation by editing A-

C mismatches

[252]

Telomere binding,

RNA/DNA binding

Shelterin

complex

R-loop formation/suppression,

G4 binding on TERRA

[253,254]

Chromatin remodeling

Chromatin remodeler,

helicase

ATRX ALT-dependent cancer, ATRX

syndrome

R-loop suppression at

telomeres

[47,255]

Chromatin remodeler,

histone chaperone

FACT complex Cancer Nucleosome assembly at R-

loop TRCs

[256]

Chromatin remodeler ARID1A Cancer TOP2A-mediated R-loop

regulation at TRCs

[257]

Chromatin remodeler INO80 Cancer R-loop resolution, chromatin

relaxation

[258,259]

Chromatin remodeler BRG1 Cancer R-loop suppression, regulation

of chromatin accessibility

[260]

Methyltransferases

RNA

methyltransferase

METTL3/14,

TonEBP

DDR, immunoregulation R-loop formation/suppression

by m6A methylation

[61,63]

RNA

methyltransferase

TRDMT1 Cancer R-loop regulation by m5C

methylation

[261]

DNA

methyltransferase

DNMT3B Immunodeficiency-centromeric

instability-facial anomalies syndrome

(ICF)

(peri-)centromeric R-loop

suppression

[262]

Other

snRNP biogenesis SMN1 Spinal Muscular Atrophy (SMA) Promotes splicing to prevent

R-loops and instability

[263]

Poly [ADP-ribose]

polymerase, DNA

repair

PARP1 Cancer R-loop suppression [160]

Transcription

co-activator

BRD4/CDK9 Cancer R-loop suppression,

transcription elongation at

TSS, transcription termination

[164,213]

Helicase-

exoribonuclease

complex

SUV3-PolA-

PNPase

Mitochondrial R-loop resolution [264]
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an additional role in R-loop-directed DNA

demethylation.

The two structure-specific endonucleases involved in

the transcription-coupled (TC) nucleotide excision

repair (NER) pathway [49,50], XPF and XPG, have

also been identified as R-loop modifiers [51–53]. Inde-
pendently of their primary function in removing

transcription-blocking DNA lesions, these factors are

involved in R-loop processing, leaving single-strand

breaks that can be converted into DSBs, through repli-

cation. Although the TC-NER pathway functions

mainly in gene bodies, the two nucleases have been

recently shown to be recruited preferentially on pro-

moters, termination regions or imprinted genomic loci,

where they facilitate R-loop-dependent, CTCF-

mediated DNA looping for transcription activation or

silencing [42,54,55]. Consistent with their enrichment

in G-rich RNAPII termination sites, especially in gene-

dense regions, R-loops have also been suggested to

assist in transcription termination by stalling RNAPII

at the poly-A sequence. Their resolution ensures the

accurate processing and termination of transcripts,

preventing transcriptional read-through [56]. This

could be achieved by the recruitment of Senataxin

(SETX), an RNA/DNA helicase involved both in tran-

scription termination, through the recruitment of the

XRN2 exoribonuclease, and R-loop resolution.

DICER, the only other reported RNA–DNA hybrid

resolvase, besides RNases H, has also been suggested

to favor the release of RNAPII at termination sites,

but it remains to be seen if this function is guided by

replication [57]. Additionally, deficiency in the RNA

helicases DHX9 and DDX5 has also been shown to

impair termination of transcription by RNA polymer-

ases [58–60]. Recently, the reversible RNA modifica-

tion N6-methyladenosine (m6A), which is generated on

R-loops by the METTL3 methyl-transferase, was

shown to facilitate transcription termination [61]. The

m6A reader YTHDF2 was additionally demonstrated

to be involved in their resolution [62,63]. Thus, a uni-

fied model emerges, wherein R-loop binding factors

may regulate gene expression while, at the same time,

ensuring that R-loops are readily removed to avoid

genome instability (Fig. 1A). However, it remains

unclear in which genomic contexts these functions are

exerted and how a balance in R-loop numbers is

achieved.

R-loops influence DNA damage response and

repair

Genome integrity is not only safeguarded by the timely

dissolution of R-loops; a large body of evidence links

the presence of R-loops and RNA–DNA hybrids

directly to DNA damage signaling and repair. By stal-

ling replication forks or promoting DSB formation, R-

loops activate the ATR and ATM protein kinases that

orchestrate the response to DNA damage [64–67].
Additionally, as in CSR, R-loops act as DNA repair

intermediates, activating a non-canonical ATM-

induced DNA damage response (DDR), with the con-

current retrograde translocation of RNAPII, which

allows accessibility for repair, even in the absence of

DSBs [68].

Less is clear about the role of R-loop processing

(recognition, editing or resolution) in genome mainte-

nance (Fig. 1B). For instance, the ssDNA-binding pro-

teins RPA and RAD51 can mediate R-loop-induced

DNA repair. However, their role could be attributed

both to R-loop binding and to end resection for DSB

repair, after R-loop resolution [69–71]. Similarly,

recruitment of RAD52 to DSBs was shown to be

reduced in RNase H-overexpressing cells [72], while

the depletion of SETX favored Non-Homologous End

Joining (NHEJ)-associated 53BP1 accumulation, over

RAD51 recruitment. Yet, evidence that R-loops

enhance or favor Homologous Recombination (HR) is

still missing. What seems critical, however, is the

impact R-loops have on DSB end resection, the step

which guides the repair choice of HR or NHEJ; con-

tradicting evidence shows R-loops can either block [73]

or enhance [74] DSB resection and, vice-versa,

resection-associated proteins, such as CtIP, can pro-

mote their resolution [75]. Of note, HR is also selected

over alternative (Alt-) NHEJ, when the methyltransfer-

ase TRDMT1 preferentially inserts RNA m5C modifi-

cations on R-loops at DSBs [76], while m6A-modified

R-loops are stabilized to promote DNA repair upon

UV irradiation or camptothecin treatment [63].

Another contradicting feature of the involvement of

R-loops in DNA repair is the transcription repression

that ensues as a response to DNA breaks. This tran-

scriptional silencing seems at odds with the formation

of R-loops that are generally correlated with high tran-

scription rates. Nevertheless, there is ample evidence to

suggest that pre-existing, or de novo-synthesized, RNA

transcripts are involved in the transient formation of

RNA–DNA hybrids, a key step in DSB repair

(Fig. 1B). These RNAs (DDRNAs, dilncRNAs)

exploit their sequence-specificity to guide DNA repair

factors, such as BRCA1, BRCA2, or RAD51, to the

site of the damage [77–79]. Although some of these R-

loops might be formed by the potential stalling of an

elongating RNAPII complex near the site of the dam-

age, it is clear that repair of DNA nicks or DSBs

favors R-loop formation, especially at actively

249FEBS Letters 599 (2025) 244–266 ª 2024 The Author(s). FEBS Letters published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

K. Stratigi et al. Harnessing R-loop processing information for therapy

 18733468, 2025, 2, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1002/1873-3468.14947 by C

ochrane G
reece, W

iley O
nline L

ibrary on [13/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



transcribed regions [80]. This seems counter-intuitive,

as one would expect that R-loop resolution would be

required to allow repair. Indeed, RNase H overexpres-

sion enhances resection [70,77], while the helicase

activity of several R-loop processing factors, such as

DDX5 or DHX9, has been shown to be promoted in

HR [81–83].

R-loops in telomere and centromere maintenance

RNA–DNA hybrids preferentially accumulate in telo-

meres and centromeres [9,10,12,23,84]. Despite their

heterochromatinized nature, centromeres are tran-

scribed by RNAPII into long non-coding RNAs (cen-

RNAs) [85–87]. CenRNAs are synthesized at low

levels, in a cell cycle-dependent manner and can be

found in single-, double-stranded RNA forms, or in

RNA–DNA hybrids at the centromere (cen R-loops)

[39,88,89]. The main function of centromeres, the

interaction of microtubules with the kinetochore dur-

ing cell division, is facilitated by cen R-loops, through

the recruitment of RPA and the consequent ATR-

dependent activation of Aurora B [90]. Although cen

R-loops are necessary for chromosome segregation,

they are involved in CENP-A localization [91] and

seem to promote end-resection for DSB repair [92];

their accumulation can be detrimental to genome sta-

bility [89] (Fig. 1C). It is tempting to speculate that,

from an evolutionary perspective, cen R-loops offer a

significant advantage to proper centromere functional-

ity, especially if one considers that centromeres do not

favor their formation; centromeric DNA sequences

are mainly AT-rich [93,94], while CENP-A, the

centromere-specific histone H3 variant, introduces pos-

itive DNA supercoiling, not suitable to promote

R-loop formation [95–97].
Similar to centromeres, telomeres are transcribed

into telomere repeat-containing RNA (TERRA), a G-

rich repetitive long non-coding RNA which has the

propensity for R-loop formation, in cis or in trans

(reviewed in [98,99]). TERRA hybrids are degraded by

RNase H enzymes in the S phase, to avoid replication

conflicts, while they promote telomere maintenance by

driving DNA repair and, as all R-loops, they are

unstable and dynamic. Their transient nature becomes

more evident by the different conditions that either

Fig. 1. Functions of regulatory R-loops. (A) R-loops form at promoters and transcription termination sites and affect transcriptional programs

by altering the histone/DNA methylation status or by recruiting chromatin remodelers or transcription factors. (B) R-loops promote DNA

repair by activating the DNA Damage Response, by recruiting protein factors that facilitate repair or by acting as repair intermediates. Pre-

existing or de novo synthesized RNAs (DDRNAs, dilncRNAs) form transient hybrids to guide DNA repair factors to the lesion, while RNA

methyl-modifications either direct the choice of repair pathway or stabilize them to promote repair. (C) Centromeric R-loops are formed by

long non-coding RNAs transcribed from centromeres (cenRNAs) and facilitate chromosome segregation through an RPA-dependent

activation of ATR. Precise fine-tuning of cen R-loops is required for proper centromere assembly (CENPA recruitment) and DSB repair. (D)

Telomeres are transcribed into telomere repeat-containing RNA (TERRA), a G-rich repetitive long non-coding RNA which has the propensity

for R-loop formation, necessary for telomere maintenance. TERRA R-loops are transient, cell cycle-controlled and are regulated by the

shelterin complex. Created with BioRender.com.
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increase, reduce or stabilize them, especially consider-

ing that TERRA levels are also subject to multiple

modifications (Fig. 1D). For example, co-

transcriptional R-loop accumulation leads to telomere

dysfunction [100], while in critically short telomeres,

R-loops are stable throughout the cell cycle and accu-

mulate due to impaired RNase H degradation [101–
103]. This, in turn, promotes HR to prevent premature

senescence. Similarly, R-loops promote telomere length

in the tumor cells that maintain their telomeres by the

alternative telomere lengthening (ALT) pathway. In

fact, homology-directed repair (HDR) can only be

achieved with strictly regulated R-loop levels, to avoid

replication stress or insufficient HDR factor recruit-

ment [13,104–106]. The formation of TERRA R-loops

can be counteracted by proteins like the RNA proces-

sing THO complex, members of the shelterin complex

that determine how TERRA interacts with the DNA,

the SWI/SNF2 chromatin remodeler ATRX, or DNA

repair factors, such as RAD51, BRCA1 and RAD27.

R-loops as drivers of genome
instability

R-loops processing in transcription and

replication stress

Within transcriptionally active regions, R-loops can

interfere with the DNA repair process by forming

physical obstacles to the lesion [107,108]. The contri-

bution of R-loop formation on genome instability has

been extensively covered in reviews and shall not be

discussed here [15,19,20,29,109]. It is noteworthy that

persistent R-loops can affect nearby gene transcription,

altering the chromatin landscape, inducing global

changes in transcription programs and contributing to

multiple disorders, including neurodegenerative disease

and cancer [18,110,111]. RNAPII stalling, due to unre-

solved R-loops, can also lead to truncated transcripts

which, if translated, can yield aberrant proteins [112].

Since RNase H overexpression can suppress these

effects, it has been presumed that the source of DNA

damage is the R-loop structure. However, R-loop for-

mation might simply be an indicator of transcription

stress, prompting the argument that stalled/arrested

RNAPII compromises genome integrity. In line with

this, R-loops have been shown to be involved in the

XRN2-dependent premature termination of RNAPII,

under conditions of transcription stress. This suggests

that unresolved R-loops might represent the actual

cause of genome instability (Fig. 2A) [113,114].

Transcription and replication share the same DNA

template and, regardless of the mechanisms to separate

them, a progressing replication fork can encounter R-

loops during the S phase [115]. Chromatin-retained

RNAPII due to transcription elongation defects can

hinder replication [116], and the impact of R-loops on

replication stress and genome stability has been

highlighted either as a source, or a consequence of

transcription-replication conflicts (TRCs) [117]. Evi-

dence from depletion or overexpression of RNase H

experiments suggests that R-loops can interfere with

replication fork progression, yet the mechanistic details

remain obscure [118–120]. In line, SETX, the FANCM

helicase and RTEL1 have also been associated with R-

loop resolution at TRCs [31,56,73,121–125]. The com-

plexity arises from the varying effects of replication

fork orientation in relation to an R-loop. It is sug-

gested that conflicts of R-loops associated with head-

on (HO)-oriented genes are more harmful, while the

co-directional (CD) encounter of the transcription

machinery by the replisome constitutes a smaller

impediment [65]. When the replication fork encounters

an R-loop, molecular events diverge depending on the

length of the R-loop, the presence of secondary struc-

tures, like G4-quadruplexes, on the ssDNA strand, or

even due to the presence of RNAPII (Fig. 2B) [126–
128]. For example, the convergence of transcription

and replication machineries in the HO orientation may

induce topological stress, hindering further progres-

sion, whereas CD encounters can pose issues if RNA

polymerase is stabilized by backtracking. Of note, the

RECQL5 helicase mitigates backtracking, thereby

reducing TRCs and genome instability [129,130].

R-loops hinder DNA repair

As briefly mentioned before, the mechanisms that link

R-loops to DNA repair remain obscure. Nonetheless,

there is evidence to suggest a role for R-loops in DSB

end resection. After recognition by the MRE11-

RAD50-NBS1 (MRN) complex, together with CtIP

[131], EXO1/DNA2-mediated long-range resection fol-

lows, a process requiring the BLM helicase [132,133].

End resection at induced DSBs can be hindered by

improper R-loop resolution, in the absence of crucial

resolution factors (e.g. DDX5, DHX9) that lead to R-

loop accumulation. This results in reduced RPA and

RAD51 loading and nuclease recruitment [70,77,134],

resulting in additional DNA damage [81–83,135]. In

support of the idea that unscheduled R-loops inhibit

end resection, RNase H/Sen1-depleted cells accumu-

lated DSBs inhibiting resection at the end of the R-loop

[73,136]. Hybrid clearance appears crucial at DSB sites,

and deregulated hybrids may interfere with resection,

causing repair defects and genome instability (Fig. 2C).
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Several factors that are implicated in R-loop resolu-

tion also interact with HR proteins, indicating a con-

nection between HR and R-loop processing. For

example, BRCA2 stimulates the helicase activity of

DDX5, affecting R-loop dissolution [82], while the

USP42 deubiquitinase facilitates DHX9 and recruits

BRCA1 at R-loops located near DSBs, reinforcing the

association between HR and hybrid resolution [81].

Additionally, R-loops could indirectly hinder DNA

repair by titrating out repair proteins, as observed in

cells expressing EWS-FLI, where unscheduled R-loops

prevent BRCA1 relocalization to DSB sites [137].

DNA breaks as a result of R-loop processing

The NER endonucleases XPF and XPG contribute to

DSBs induced by R-loops, and their depletion results

in an increase in cellular R-loop levels

Fig. 2. R-loops as a source of genome stability. R-loops, if left unresolved, can be processed into single-strand or double-strand breaks, yet

their impact extends to multiple DNA-templated processes, further contributing to genome instability. (A) R-loop formation leads to RNAPII

stalling, DNA repair inhibition or replication stress. Persistent R-loop accumulation introduces global gene expression changes and leads to

truncated transcripts and the aggregation of aberrant proteins, further adding to transcription stress. (B) Replication forks encountering the

transcription machinery in a head-on (HO) or co-directional (CD) orientation lead to distinct outcomes. HO conflicts, being more damaging

than CD, create favorable conditions for R-loop formation and DNA damage. (C) R-loops impede DNA repair and inhibit end resection at

DSBs, by physically blocking access to or by interfering with recruitment of repair factors. Created with BioRender.com.
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[42,51,53,72,138]. The mechanism by which XPF and

XPG act on R-loops is not fully understood; they

might cleave opposite strands, generating a DSB, or

cleave the same strand, generating a single-strand

break (SSB), that is then processed to form a DSB.

XPG and XPF can also be recruited to R-loops by

XAB2, indicating a potential role beyond classical

NER [52]. Yet, one could consider these XPF/XPG-

induced DSBs not to be a mark of genome instability,

but an R-loop processing intermediate that escapes the

repair control. Lastly, it has been described that XPF-

XPG are also involved in the generation of RNA–
DNA hybrids or ssDNA fragments, that are actively

exported to the cytoplasm of SETX/BRCA1/

SAMHD1-challenged or ERCC1-deficient cells, respec-

tively, where they induce an inflammatory response

[51,139].

Topoisomerase 1 (TOP1) inhibition also results in

R-loop-associated DSBs. For instance, the TOP1

inhibitor camptothecin (CPT) induces R-loops contain-

ing trapped TOP1 cleavage complexes, and the endo-

nucleases XPF, XPG, FEN1, and MRE11 that

contribute to break formation [138]. Additionally, the

suppression of R-loops by Sae2/CtIP leads to reduced

DNA break formation in human cells, while the

absence of CtIP and XPG leads to R-loop accumula-

tion, which is further exacerbated with the addition of

CPT [53,75].

Lastly, cellular metabolic byproducts, such as reac-

tive oxygen species (ROS), and enzymatic activities

can cause damage to the exposed single-stranded DNA

(ssDNA) of an R-loop structure.

R-loop formation or stabilization is increased

specifically in actively transcribed regions, due to

ROS-induced DNA nicks at these sites, consequently

resulting in DNA damage [71,140,141]. Additionally,

cytidine deaminases like APOBEC proteins or AID

can contribute to damage of the exposed ssDNA in R-

loops [142–144], resulting in uracil formation and sub-

sequent single-strand break formation, as observed in

immunoglobulin CSR [143].

R-loops as putative therapeutic
targets

It becomes evident, from the above that R-loops are

an integral part of normal cellular processes. Yet, the

need for nuanced regulation of R-loop formation and

resolution, for the efficient execution of their func-

tions, as opposed to driving genome instability, is a

recurrent theme in the study of their (patho-)

physiology. It thus seems imperative for cells, for

example, to separate the role of R-loops in facilitating

the recruitment of transcription factors and chromatin

remodelers, from their involvement in transcription

inhibition through RNAPII stalling. Likewise, cells

need to fine-tune the timing of R-loop formation and

subsequent removal. This is in line, for example, with

the cell cycle-dependent regulation of telomere or cen-

tromere R-loops, which fits the DNA replication

schedule to avoid transcription-replication collisions.

To do so, cells must be able to determine the exact

location or the chromatin environment that favors R-

loop formation, or select which processing factors will

be guided to the structures and when. Harnessing this

information would provide us with insights on R-loop

manipulation toward rationalized therapeutic

interventions.

Indeed, R-loops have been documented to be associ-

ated with multiple diseases, including cancer, neurolog-

ical syndromes and autoimmune disorders, which have

been extensively described in multiple reviews [19,145–
150]. In cancer, the abnormal accumulation of R-loops

arises from global perturbations in transcription, repli-

cation, or RNA processing. The complex interplay

between R-loops and oncogenes or tumor suppressor

genes further drives tumorigenesis. Disease progression

in several neurodegenerative disorders, such as amyo-

trophic lateral sclerosis type 4 (ALS4) or ataxia with

oculomotor apraxia 2 (AOA2), is also associated

with alterations in R-loop levels, while they also con-

tribute to repeat instability, either through expansion

or contraction [37,110,124,151–153]. Lastly, an immu-

nogenic role has been attributed to R-loops, especially

those associated with the Aicardi Gouti�eres Syndrome

(AGS), an autoimmune disorder that leads to progres-

sive neurological damage driven by increased immune

signaling [154,155]. AGS is caused by mutations in a

number of genes involved in RNA/DNA processing,

including RNase H2, TREX1, SAMHD1 and

ADAR1, which eventually lead to the cytoplasmic

accumulation of nucleic acid fragments.

As an approach toward combination therapy in

oncology, R-loops have been targeted in order to sen-

sitize cancer cells to chemotherapeutic treatments.

Intercalating molecules, such as ethidium bromide

[156] or actinomycin D [157] that directly interact with

the RNA–DNA hybrids, have been used to inhibit tel-

omerase activity or cell growth [158,159]. So far, there

have been several attempts to exploit R-loop-driven

DNA damage, toward the induction of cancer cell

death. ATR inhibition, for example, sensitizes cells to

R-loop-induced DNA breaks [66], while PARP inhibi-

tion leads to synthetic lethality in cells with impaired

HR repair [160]. Moreover, reduced levels of RNF168,

the E3 ubiquitin ligase of the R-loop helicase DHX9,
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are correlated with a lower tumor incidence and better

survival outcomes in patients [161]. The inhibition of

RPA has also been shown to induce cytotoxicity and

increase the sensitivity of cancer cells to chemotherapy

[162]. By impeding the transcription process,

Bromodomain-containing protein 4 (BRD4) inhibition

leads to R-loop-dependent transcription-replication

collisions, DSBs and cell death [163,164], while inhibi-

tion of pre-mRNA release leads to elevated R-loop

levels and, interestingly, to the induction of apoptosis

[165,166]. Similarly, G-quadruplex (G4) stabilizers

[167–175], histone deacetylase inhibitors [176] or com-

pounds that alter R-loop homeostasis [64,177–180]
induce R-loop-dependent DNA damage and are effi-

cient anticancer treatments. Similarly, selective inhibi-

tory molecules that affect R-loop homeostasis (e.g. the

CARM1 histone arginine methylase inhibitor

EZM2302 [181], the PRMT1 histone arginine methyla-

transferase inhibitor GSK3368715 [179] or spliceosome

inhibitors [182]) have been shown to induce cytotoxic-

ity. Putative anticancer drug targets also include topo-

isomerase 1 [183], RNase H2 [184], SETX [185] or

splicing factors [64,186,187] whose selective inhibition

increases R-loop levels. In neurodegenerative syn-

dromes like fragile X syndrome (FXS), the therapeutic

target is to inhibit R-loop formation and trinucleotide-

repeat expansion that would lead to gene silencing

[188]. Upregulation of R-loop-specific helicases, such

as SETX, or endonucleases like RNase H1/H2, repre-

sents an efficient strategy to reduce R-loop levels.

Alternatively, targeting the resolution of G4 structures

that stabilize R-loops (e.g. in C9ORF72) or promoting

the DSB repair processes to counteract the down-

stream R-loop effects could prevent the pathology of

disease. The RNA–DNA hybrid present in the poly-

purine tract of HIV-1 has also been targeted with

triple-helix-forming oligonucleotides [189] or small

intercalating molecules [190], in order to inhibit reverse

transcription of the virus RNA. Accordingly, G4

ligands have been used as antiviral therapy or to target

telomeric R-loops [191–193].
Exploring the therapeutic potential of R-loop

manipulation, while conceptually straightforward,

faces certain pitfalls. Similarly to their regulatory

Fig. 3. Unlocking the dual nature of R-loops. R-loops function as both regulators of gene expression, DNA repair, telomere maintenance or

chromosome segregation, and as drivers of genome instability. This inherent dual nature of these structures is coordinated by RNA/DNA/

chromatin processing factors that safeguard the genome from detrimental R-loop-instigated DNA damage or cellular dysfunction. The

association of R-loops with multiple diseases, including cancer, neurodegenerative or autoimmune disorders, underscores their clinical

relevance. Therapeutic strategies targeting R-loop manipulation show promise, with approaches ranging from promoting (e.g. fragile X

syndrome) to inhibiting their resolution (e.g. cancer). However, the context-dependent nature of R-loops necessitates careful consideration

to avoid disrupting cellular homeostasis. Future research aimed at understanding the intricacies of R-loop biology and developing context-

specific interventions will be crucial for realizing their therapeutic potential while minimizing adverse effects. Created with BioRender.com.
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functions, the adverse effects of R-loops also seem

context-dependent. In this sense, any efforts to force-

fully eliminate them would disrupt the tight balance of

their context-specific functions and lead to perturba-

tions of cellular homeostasis. Of note, the indirect

targeting of R-loops through their associated factors

brings more complexity to the end result. For example,

RNase H1 overexpression, besides being toxic [194–
199], can alter the stability of a number of DDR fac-

tors [199], or impact the outcome of transcription pro-

grams [200,201]. Presumably, the unwinding capacity

of helicases could prove more beneficial over the loss

of nascent RNA transcripts. Moreover, the cell-cycle-

regulated delivery of RPA-independent RNase H1

molecules could enhance efficiency. Utilizing the

sequence specificity of R-loops in specific contexts,

such as employing guide RNAs, would offer a more

targeted approach. Overall, the therapeutic potential

of targeting R-loops is promising, with strategies

including inhibition of R-loop formation and promo-

tion of their resolution offering avenues for interven-

tion (Fig. 3). However, the complex nature of R-loop

biology presents challenges, as their dual role as both

regulators and sources of genome instability must be

carefully considered. Context-specific approaches will

be essential to minimize off-target effects and maintain

cellular homeostasis while harnessing the therapeutic

potential of R-loop manipulation.

Concluding remarks

Research on R-loops, the three-stranded nucleic acid

structures formed by the hybridization of RNA to the

DNA template, has seen significant interest due to

the multitude of cellular processes that are affected by

their presence. Inspiring work in the past years high-

lights their inherent duality as both regulators of gene

expression, DNA repair, telomere maintenance or chro-

mosome segregation, and as a potent source of DNA

damage and genome instability (Fig. 3). Each role

depends heavily on the genomic context and time of for-

mation, but also, equally, on the distinct protein factors

that mediate their resolution. Although our knowledge

of the R-loops’ impact on genome stability is increasing,

so much so that they could even be brazenly considered

as a DNA damage marker, many questions remain on

what makes an R-loop to be harmful. Their DNA con-

tent/sequence definitely adds to this complexity, espe-

cially when it modifies their accessibility potential, while

the surrounding torsional or epigenetic status of chro-

matin seems key to their functional outcome. Yet, from

an evolutionary perspective, one can’t help but ponder

the causality of R-loop formation. For example, is their

transcription termination function general for all, or at

least a specific subset of genes? Is the choice of HR over

NHEJ repair affected by R-loop presence and could this

be a characteristic of actively transcribed loci? And,

vice-versa, could we extrapolate information from R-

loop features (e.g., RNA–DNA hybridization or sec-

ondary structures) to be necessary for all DNA looping

events? Continuing research over such questions will

introduce an exciting number of opportunities toward

the understanding of R-loop physiology and regulation.

By navigating the complexities of R-loop biology, we

can unlock new possibilities for developing targeted

therapeutic interventions, to address a wide range of dis-

eases and improve human health.
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