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Abstract: The progressive aging of the global population and the high impact of neurodegenerative
diseases, such as Alzheimer’s disease (AD), underscore the urgent need for innovative diagnostic
and therapeutic strategies. AD, the most prevalent neurodegenerative disorder among the elderly, is
expected to affect 75 million people in developing countries by 2030. Despite extensive research, the
precise etiology of AD remains elusive due to its heterogeneity and complexity. The key pathological
features of AD, including amyloid-beta plaques and hyperphosphorylated tau protein, are established
years before clinical symptoms appear. Recent studies highlight the pivotal role of neuroinflammation
in AD pathogenesis, with the chronic activation of the brain’s immune system contributing to the
disease’s progression. Pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, are elevated in
AD and mild cognitive impairment (MCI) patients, suggesting a strong link between peripheral
inflammation and CNS degeneration. There is a pressing need for minimally invasive, cost-effective
diagnostic methods. Buccal mucosa cells and saliva, which share an embryological origin with the
CNS, show promise for AD diagnosis and prognosis. This study integrates cellular observations
with advanced data processing and machine learning to identify significant biomarkers and patterns,
aiming to enhance the early diagnosis and prevention strategies for AD.
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1. Introduction

The progressive aging of the world’s population and the high impact of major human
pathologies, including neurodegenerative diseases, have catalyzed the emergence of new
tools that could lead to preventive, early diagnosis, or therapeutic strategies. Alzheimer’s
disease (AD), the most common neurodegenerative disorder among the elderly, accounts
for 60–70% of all dementia cases and carries a high morbidity rate, with serious social
and economic consequences [1]. By 2030, it is estimated that approximately 75 million
people in developing countries will be affected by AD. While each person experiences
biological aging differently, aging is widely recognized as a gradual decline in molecular,
cellular, tissue, and, ultimately, organ function, leading to a loss of physiological integrity,
which includes the underlying pathology of AD [2]. Despite extensive research on the
pathological and clinical aspects of AD, its precise etiology remains unknown due to the
disease’s heterogeneity and complexity.

The hallmarks of AD pathology, namely amyloid-beta (Aβ) formation and extracellular
deposits of plaques and hyperphosphorylated tau protein correlated with neurofibrillary
tangles (NFTs), which are linked to synaptic and neuronal loss [3,4], are now recognized
to develop several years before any clinical symptoms become apparent in patients. De-
spite extensive investigation into the mechanisms behind the pathology of amyloid-beta
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(Aβ) plaques, hyperphosphorylated tau aggregates, and neurofibrillary tangles (NFT),
a clear understanding of AD’s pathogenesis remains elusive, hindering efforts to prevent
the disease.

In recent years, numerous clinical and research studies have demonstrated the strong
correlation between neuroinflammation and neurodegeneration, with a well-balanced
innate and adaptive immune system participating in the inflammatory pathways of the
central nervous system (CNS) [5,6]. Neuroinflammation, unlike other risk factors or genetic
causes of AD, appears to have a pivotal role as a result rather than as a cause of the AD
pathology background. Chronic and persistent activation of the innate immune system
of the brain triggers the release and inflammatory cascade of pro-inflammatory and toxic
products, such as cytokines and reactive oxygen species, which facilitates the Aβ and NFT
pathologies [7–10]. The increased presence of pro-inflammatory cytokines, TNF-α, IL-2, IL-
1β, and IL-6 in the CNS and blood of AD and MCI patients [11] suggests a strong correlation
between Alzheimer’s disease and MCI patients in a peripheral inflammation state, and its
crucial role in the mechanisms associated with aging and neuroinflammation disorders [12].
It is well known that the upregulation of pro-inflammatory cytokines that can affect brain
function is a consequence of a chronic low-grade state of inflammation [13–15]. Pro-
inflammatory cytokines TNFa, IL-1β, and IL-6 have been described as having a fundamental
role in the integrity of the blood–brain barrier (BBB) and its specific defensive functions.
During AD progression, the upregulation of TNF-α and IL-6 is linked to the alteration
of BBB function, facilitating the crossover of lymphocytes and macrophages from the
periphery into the brain, supporting the strong relationship between the immune system
and central nervous system (CNS) [16–18].

Aging or peripheral inflammatory conditions can also lead to alterations in the blood–
brain barrier, allowing immune cells to enter the brain tissue and potentially supporting
neuropathological processes [19,20] depending on the duration and intensity of stimulation.
The in-depth interpretation and translation of these pathological pathways that could form a
potential connection between normal aging and risk factors that lead to neuroinflammation
and AD is of great importance for prevention and potential lifestyle interventions [21,22]. Since
prevention is crucial in managing AD, the development of new trial designs, diagnostic
approaches, and technological solutions using data mining techniques are anticipated to
enhance its effectiveness and have a greater impact in the field of prevention.

To date, there has been no minimally invasive, straightforward, and cost-effective pro-
cedure available for the early detection or prevention of AD. Apart from the cerebrospinal
fluid (CSF) approach, which is unpleasant and unsuitable for routine use, a range of can-
didate biomarkers from blood samples have been proposed. Although these biomarkers
have not yet been validated, they represent a potentially more cost-effective and relatively
less invasive approach that could offer valuable information for the early diagnosis or
prognosis of the disease or serve as a screening tool [5,6,23–26]. In recent years, buccal
mucosa cells and saliva have emerged as promising tool for the potential diagnosis, prog-
nosis, or screening of AD. This interest stems from their shared embryological origin with
the central nervous system (CNS) from differentiated ectodermal tissue. These materials
are expected to provide insights into changes related to brain neurodegeneration and the
AD pathology [11,27–29]. Many studies have shown significant structural and buccal
epithelium differences during normal aging or in AD and MCI patients compared with
healthy individuals [7–10].

Buccal cells, associated with the immunocytochemical expression of peripheral pro-
inflammatory cytokines, including TNF-α, IL-1β, and IL-6, have demonstrated the associ-
ation between peripheral inflammation and CNS degeneration in individuals with MCI
and AD or the elderly. This includes the activation and release of various peripheral pro-
inflammatory cytokines and antigens, such as TNF-α, IL-1β, and IL-6, that can penetrate
the BBB and provoke specific responses within the brain. Additionally, factors such as
insulin levels, insulin receptor resistance, and adipose tissue are implicated in increasing
the risk of AD [30–35].
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This study aims to bridge the gap between clinical and computational methodologies
to enhance the understanding and detection of Alzheimer’s disease. By integrating detailed
cellular observations with advanced data processing and machine learning techniques,
this research seeks to identify significant biomarkers and patterns associated with AD.
The goal is to develop minimally invasive, cost-effective, and reliable methods for the early
diagnosis and prevention of AD, thereby contributing to better management and potentially
mitigating the impact of this neurodegenerative disorder on the aging population.

2. Materials and Methods
2.1. Sample Collection

A cohort of 162 individuals was included in this study, comprising 140 healthy indi-
viduals with no symptoms of dementia or cognitive deficits and 22 patients diagnosed with
mild cognitive impairment (MCI) or Alzheimer’s disease (AD). The participants, ranging in
age from 18 to 80 years, were randomly selected, without gender, literacy, or socioeconomic
restrictions. Importantly, none of the participants presented signs of oral injury at the
time of buccal cell collection. Buccal cell samples were obtained from the inner cheeks of
each participant using soft cyto-brushes. The collected material was partially prepared
as smears, immediately fixed in 95% alcohol, and stained using the Papanicolaou (Pap)
method for cytomorphological analysis.

2.2. Immunological Analysis

For immunological analysis, additional slides were prepared from the buccal cell
samples. These slides were transferred to 4% formaldehyde in PBS for a minimum of
30 min, air-dried for 1 h, and stored in sealed boxes at −4 °C until immunostaining
procedures were performed. The antibodies used for immunocytochemistry included
TNFα (52B83), IL-1β (E7-2-hIL1β), and IL-6Rα (H-7), all mouse monoclonal antibodies from
Santa Cruz Biotechnology Inc., each at a dilution of 1:50. The antibodies showed brown
cytoplasmic expression when stained with DAB Quanto Chromogen.

Microscope slides containing buccal cell smears were evaluated by visual scoring.
Buccal cells were classified as basal, intermediate, differentiated, or karyolitic based on
their cytoplasmic and nuclear features and ratios (Pap stain). This stain is valuable in
staining a variety of bodily secretions and cell smears (nuclei: blue, superficial cells: pink,
intermediate cells: blue). Hematoxylin Gill was selected as it is the lightest basophilic
stain and does not overstain the specimen, but it complements the other aspects of the
specimen, such as the cytoplasm. The frequency and proportion of these different cell
populations were analyzed. Additionally, the cytoplasmic expression of buccal cells stained
by the immunocytochemical method was evaluated and scored as mild–negative (<10%),
medium (10–50%), and high (>50%) antibody expression according to two variable factors,
i.e., counting the number of positively stained cells and scoring the intensity of the staining.

2.3. Data Analysis

Data preprocessing was carried out using Python’s pandas library [36]. The dataset
comprised 162 instances across 13 variables, with 9 variables retained for analysis. Cate-
gorical variables were converted to numerical values; for example, sex was encoded as 1
for male and 0 for female. Age was categorized into six groups (0–19, 20–25, 26–35, 36–50,
51–65, 65+) and encoded numerically from 0 to 5. The tag for analysis was transformed into
three categorical values: 0 for health, 1 for neuro, and 2 for other disease profiles. Health
represents a cohort with no symptoms of dementia or cognitive deficits, neuro represent pa-
tients diagnosed with MCI and AD, and other denotes a cohort with the positive expression
of TNF-α, IL-1β, and IL-6Rα; smoking; and a neurodegenerative history.

Data visualization was performed using the matplotlib [37] and seaborn [38] libraries.
A correlation heatmap using Pearson’s correlation coefficient was created to examine
the inter-variable relationships and their associations with the dataset’s tag (profile). Di-
mensionality reduction was conducted using principal component analysis (PCA) [39],
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Uniform Manifold Approximation and Projection (UMAP) [40], and t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) [41], with visual representations generated in both 2D
and 3D formats.

Feature importance was assessed using a hybrid approach [42] combining three gradi-
ent boosting classifiers: XgBoost [43], CatBoost [44], and LightGBM [45]. These algorithms
ranked the features based on their importance, and the rankings were aggregated using a
Borda rank-based count method. A line/dot plot was constructed to display the feature
importance values.

Multi-class classification was conducted using the random forest algorithm [46], with a
10-fold cross-validation procedure to evaluate the performance. This particular classifier
was selected due to its well-established strong performance on complex biomedical datasets,
combined with its interpretability; it offers a valuable feature importance metric to assess
the significance of individual features. The results were synthesized into a confusion matrix.
Additionally, a decision tree classifier [47] was configured with a maximum depth of 10,
a minimum of 15 samples required to split an internal node, and a minimum of 5 samples
per leaf node to maintain model interpretability.

These combined biological and computational methodologies ensured a comprehen-
sive analysis, integrating detailed cellular observations with advanced data processing
and machine learning techniques to provide robust insights into the dataset. This study
aims to bridge the gap between clinical and computational methodologies to enhance
the understanding and detection of Alzheimer’s disease. By integrating detailed cellular
observations with advanced data processing and machine learning techniques, the research
seeks to identify significant biomarkers and patterns associated with AD. The goal is to
develop minimally invasive, cost-effective, and reliable methods for the early diagnosis and
prevention of AD, thereby contributing to better management and potentially mitigating
the impact of this neurodegenerative disorder on the aging population.

3. Results

The results of this study revealed significant findings from both the biological and
computational analyses. Microscope slides containing buccal cell smears were evaluated
to classify buccal cells based on their cytoplasmic and nuclear features as can be seen in
Figure 1. The frequencies and proportions of basal, intermediate, differentiated, and kary-
olitic cells were analyzed. Additionally, the cytoplasmic expression of buccal cells stained
by the immunocytochemical method was evaluated and scored. The analysis showed
varied expression levels of pro-inflammatory cytokines TNFα, IL-1β, and IL-6, with distinct
patterns observed in individuals with AD and MCI compared to healthy controls.

From a computational perspective, the correlation heatmap indicated significant
positive correlations between the target variable (profile) and the constructed age range,
and, to a lesser extent, with the TNF, IL-6, and IL-1β variables as shown in Figure 2. This
suggests that these factors are strongly associated with the disease profiles being studied.

Dimensionality reduction visualizations revealed that the data points clustered to-
gether distinctly, with the most defined groupings observed. Four distinct clusters were
identifiable, with one cluster comprising samples characterized by both ‘neuro’ and ‘other’
profiles, while the remaining clusters encompassed samples with ‘neuro’ and/or ‘other’
profiles as shown in Figure 3. This indicates the clear separation between the different dis-
ease profiles based on the analyzed variables. In the 2D PCA plot, 74% of the total variance
is captured, while the 3D PCA plot accounts for 81.4% of the variance. Dimensionality
reduction was also performed using the top four features identified through the feature
importance consensus method. Under this approach, the first two principal components
accounted for 87% of the total variance, and the first three principal components explained
95%. However, it is important to highlight that the final PCA visualizations, both in 2D
and 3D, did not reveal any clear separation patterns among the samples. As a result,
the findings related to the top four features are not included in this manuscript.
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Figure 1. Microscopic views of buccal cells. (A). Buccal intermediated squamous cells using Pap stain
observed in healthy individuals under ×40 magnification. (B). Pap stain observed in AD patients
superficial buccal cells ×20 magnification. Pink are superficial cells, blue are intermediate cells.
(C). Immunocytochemistry analysis of buccal cells indicating extensive cytoplasmic expression. IL-6
×10 medium expression of buccal squamous cells of AD patients. (D). IL-6 ×20 medium cytoplasmic
expression of squamous buccal cells of AD patients. (E). TNF-α x20 strong cytoplasmic expression
of buccal cells squamous of AD patients. (F). IL-1β x10 mild expression of squamous buccal cells
observed in healthy individuals. TNFa, IL-6, IL-1β have exactly the same cytoplasmic expression.
The stainer recognizes their presence due to the different barcodes on different marked rails.

The feature importance analysis highlighted the age range as the predominant factor
in differentiating among the three categories of the output variables (profiles) as shown
in Figure 4. Other significant features included IL-6, IL-1β, and TNF, underscoring their
relevance in the context of the disease profiles.

The performance of the random forest algorithm showed the highest accuracy in
correctly identifying samples from the ’other’ category, with moderate effectiveness for the
’healthy’ and ’neuro’ categories as can be seen in Figure 5. Specifically, of the 55 samples
labeled as healthy, the algorithm accurately classified 37. For the neuro category, it correctly
identified 16 out of 21 samples. In the other category, the algorithm achieved the accurate
classification of 60 out of a total of 85 samples, underscoring its particular strength in
recognizing this class.
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Figure 2. Correlation heatmap that encompasses the nine variables selected for the scope of this
investigation. Each cell within the heatmap is color-coded to represent the corresponding correlation
value, which spans from −1 for variables exhibiting a negative correlation (indicated by white color)
to 1 for variables demonstrating a positive correlation (signified by purple color). As anticipated, all
elements situated on the principal diagonal of the plot are rendered in deep purple, denoting the
correlation of a variable with itself. Notably, the target variable of the dataset (profile) manifests a
significant positive correlation with the constructed age range and, to a lesser extent, with the TNF,
IL-6, and IL-1β variables.

Figure 3. Dimensionality reduction visualizations employing PCA, UMAP, and t-SNE have been
generated in both two-dimensional (2D) and three-dimensional (3D) formats. In these visualizations,
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each data point, representing an individual sample, is distinguished by colors corresponding to its
profile value (’health’, ’other’, ’neuro’), as denoted in the legends of the figures. Across all three di-
mensionality reduction techniques, it is observable that the data points cluster together, with UMAP’s
2D visualization offering the most defined grouping among all configurations examined. Specifically,
in the UMAP 2D plot, four distinct clusters are identifiable; one of these clusters comprises samples
characterized by both ‘neuro’ and ‘other’ profiles, while the remaining three clusters encompass
samples with ‘neuro’ and/or ‘other’ profiles. The key features were consistently emphasized across
all dimensionality reduction techniques, as determined by the established feature selection scheme.
As previously noted, a comprehensive evaluation was conducted using the top four features across
various dimensionality reduction algorithms, including both PCA and UMAP. The results from these
analyses indicated no significant differences when compared to those obtained using the full set of
features. Consequently, the conclusions regarding cluster separation remain unchanged, irrespective
of the number of features utilized.

Figure 4. A line/dot plot has been constructed to display the outcomes derived via the Borda feature
importance consensus methodology. On this plot, the y-axis enumerates the names of the features
present in the dataset, while the x-axis quantifies the importance values ascertained through the
Borda rank-based count. The examination of this plot reveals the concordance between the outcomes
of the consensus feature importance scheme and the patterns observed in the preceding correlation
heatmap; specifically, the age range emerges as the predominant factor in differentiating among
the three categories of the output variable (profile), mirroring its position as the most significantly
positively correlated feature in the heatmap. A similar relationship is observed for the features
IL-6, IL-1β, and TNF, underscoring their relevance in accordance with both the consensus feature
importance scheme and the correlation heatmap.
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Figure 5. The confusion matrix, derived from multi-class classification after 10-fold cross-validation
using the random forest algorithm, illustrates the model’s performance. Notably, random forest
exhibits its highest accuracy in correctly identifying samples from the ’other’ category, while also
demonstrating moderate effectiveness for the remaining two categories within the target variable.
Specifically, of the 55 samples labeled as healthy, the algorithm accurately classified 37. For the neuro
category, it correctly identified 16 out of 21 samples. Remarkably, in the other category, the algorithm
achieved the accurate classification of 60 out of a total of 85 samples, underscoring its particular
strength in recognizing this class.

The decision tree classifier that was also applied has been configured to balance
complexity and interpretability. The tree facilitated the clear visualization of the feature
space’s segmentation, capturing essential data patterns and avoiding spurious correlations
as can be seen in Figure 6. This approach allowed for transparent and interpretable model
results, contributing to a comprehensive understanding of the data.

The integration of detailed cellular observations with advanced data processing and
machine learning techniques provided robust insights into the dataset. The findings
underscore the potential of combining biological and computational methodologies to
enhance the understanding and detection of Alzheimer’s disease, paving the way for the
development of effective early diagnosis and prevention strategies.
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Figure 6. Decision tree visualization with depth control and sample constraints. This figure presents
a decision tree classifier that has been trained on the dataset. The tree has been prudently initialized
with a maximum depth of 10 to prevent excessive complexity, a minimum sample requirement of 15
for any internal node split to avoid overfitting to noise, and a minimum of 5 samples for each leaf
node to ensure sufficient data support for terminal decisions. Each node represents a decision point
based on the value of a particular feature, with branches leading to outcomes or further decisions.
The leaves, denoted by their unique colors, correspond to the final classification outcomes. The depth
parameter ensures that the tree remains manageable and interpretable, while the constraints on
the splits and leaf samples guide the tree to capture essential data patterns and avoid spurious
correlations. This strategic configuration facilitates a transparent and interpretable model, allowing
for the clear visualization of the feature space’s segmentation according to the predictive model’s
learned logic.

4. Discussion

This study demonstrates the potential of integrating biological observations with
advanced computational methodologies to enhance the understanding and detection of
Alzheimer’s disease (AD). The analysis revealed significant patterns and correlations,
emphasizing the role of neuroinflammation and its biomarkers in the progression of AD.
The findings suggest that peripheral inflammation is critically involved in the disease’s
pathogenesis, supporting the hypothesis that immune system dysfunction contributes to
neurodegenerative processes.

The application of artificial intelligence (AI) and machine learning (ML) techniques
in this research has proven to be instrumental in managing and interpreting complex
datasets. These advanced computational methods allowed for the identification of sig-
nificant biomarkers and the differentiation of disease profiles with high accuracy. As the
volume and complexity of biomedical data continue to grow, AI and ML will become
increasingly essential in uncovering subtle patterns and relationships that are not readily
apparent through traditional analysis.

The use of minimally invasive sampling methods, such as buccal cells, combined
with sophisticated data processing, offers a promising approach for the early diagnosis
and monitoring of AD. This study highlights the potential of such integrated method-
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ologies to develop reliable, cost-effective diagnostic tools that can be widely applied in
clinical settings.

The continuous evolution of AI and ML technologies holds great promise for the future
of biomedical research. By enabling the analysis of large and complex datasets, these tools
can help to identify novel biomarkers and therapeutic targets, paving the way for more
effective prevention and treatment strategies. Future research should focus on leveraging
these advancements to explore the intricate interactions between genetic, environmental,
and biological factors in AD, ultimately improving patient outcomes and advancing our
understanding of this debilitating disease.
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