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Abstract: Alzheimer’s disease (AD) is the most common cause of neurodegenerative dementia in
the elderly, which is characterized by progressive cognitive impairment. Herein, we undertake
a sophisticated computational analysis by integrating single-cell RNA sequencing (scRNA-seq)
data from multiple brain regions significantly affected by the disease, including the entorhinal
cortex, prefrontal cortex, superior frontal gyrus, and superior parietal lobe. Our pipeline combines
datasets derived from the aforementioned tissues into a unified analysis framework, facilitating
cross-regional comparisons to provide a holistic view of the impact of the disease on the cellular and
molecular landscape of the brain. We employed advanced computational techniques such as batch
effect correction, normalization, dimensionality reduction, clustering, and visualization to explore
cellular heterogeneity and gene expression patterns across these regions. Our findings suggest that
enabling the integration of data from multiple batches can significantly enhance our understanding
of AD complexity, thereby identifying key molecular targets for potential therapeutic intervention.
This study established a precedent for future research by demonstrating how existing data can be
reanalysed in a coherent manner to elucidate the systemic nature of the disease and inform the
development of more effective diagnostic tools and targeted therapies.

Keywords: big data; transcriptomics; dimensionality reduction; brain; Alzheimer’s disease

1. Introduction

Alzheimer’s disease (AD), the most common form of dementia among older adults,
is characterized by a progressive decline in cognitive function and the pathological accu-
mulation of amyloid-beta plaques and tau tangles [1]. The disease’s complexity is further
compounded by its multifactorial nature, involving genetic, environmental, and molecular
factors. Understanding the pathogenesis of AD at a cellular and molecular level has been a
significant challenge, largely due to the heterogeneous nature of the brain and the intricate
interactions between various cell types [2]. The considerable interval between the onset of
initial pathophysiological changes and the emergence of clinical symptoms suggests an
Alzheimer’s disease continuum, encompassing various transitional stages. At the earliest
point in this continuum is the preclinical AD phase. Following this is the prodromal stage
known as mild cognitive impairment (MCI), characterized by cognitive deficits that do not
significantly interfere with daily activities. Beyond MCI lies the dementia phase [3].

The development of single-cell RNA sequencing (scRNA-seq) has provided an un-
precedented opportunity to explore multiple complexities at the resolution of individual
cells [4,5]. scRNA-seq technology has emerged as the leading method for deciphering the
diversity and intricacies of RNA transcripts at the individual cell level. It enables the explo-
ration of the composition, functions, and heterogeneity within various organized tissues,
organs, or organisms. The procedures of scRNA-seq primarily involve single-cell isola-
tion and capture, cell lysis, reverse transcription (conversion of RNA into cDNA), cDNA
amplification, and library preparation [6]. This technology allows detailed examination
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of gene expression patterns within single cells, offering insights into the cellular compo-
sition of tissues and the distinct role of different cell types between healthy and diseased
conditions. In the context of AD, scRNA-seq has the potential to reveal how different brain
regions are uniquely affected by the disease, highlighting variations in cellular responses
and molecular pathways [7,8]. Increased amyloid-beta secretion in AD olfactory mucosal
cells and detailed cell-type-specific gene expression patterns have been reported through
scRNA-seq as well as 240 differentially expressed disease-associated genes compared to the
cognitively healthy controls and five distinct cell populations [9]. Specific transcriptional
changes in different cell types such as neurons, astrocytes, and microglia from post-mortem
human brain tissue of AD patients and control subjects have been identified, revealing
distinct transcriptional alterations in these glial cells and suggesting their pivotal roles in
the disease’s progression [10].

In a previous work by our group, gene—-gene interaction networks integrated with
scRNA-seq expression profiles were constructed, while the most active subnetworks were
isolated from the entire network topology [11]. Moreover, combining both deep learning
and machine learning processes examining scRNA-seq data obtained from the peripheral
blood of both AD patients with an amyloid-positive status and healthy controls with an
amyloid-negative status, differentially expressed genes have been observed which were
mainly enriched in the regulation of the immune system, interferon-gamma-mediated
signalling, and the cellular defence response [12]. Drawing upon data from a database
called scREAD (single-cell RNA-seq Database for Alzheimer’s Disease), another study
centred on astrocytes isolated from the entorhinal cortex of both AD patients and healthy
individuals. The study identified differentially expressed genes and extracted disease-
specific pathways and gene ontologies, along with predicting drugs and natural products
capable of regulating AD-specific signatures in astrocytes [13]. Furthermore, disruptions
in synaptic signalling and cell-cycle regulation across different cell types in the prefrontal
cortex of AD patients have been observed, offering insights into neuronal dysfunction
and degeneration mechanisms in the disease while critical pathways involved in synaptic
signalling and cell-cycle regulation have been significantly disturbed in the prefrontal
cortex, highlighting potential therapeutic targets [14]. Variations in immune response
genes and disruptions in the insulin/IGF1 signalling pathways have also been identified,
crucial for understanding the disease’s early stages, pinpointing potential biomarkers
for early detection and intervention, which could be pivotal in monitoring the disease’s
progression [15]. An upregulation of the insulin/IGF1 signalling machinery seems contrary
to the notion of central insulin resistance. Alternatively, it might represent a compensatory
mechanism that enhances neuroprotection in areas of the Alzheimer’s disease brain that
have not yet experienced neuronal loss [15]. Pathways and neurotransmitters involved in
AD are summarized in Figure 1.

[ PIK3K/Akt signalling pathway]

[ Notch signalling pathway ] [Acetylcholine neurotransmitter reduction ]
[mTOR—autophagy signalling pathway] [Glutamate transporter downregulation ]
[ NMDA activation ] [ Loss of GABAergic neurons ]
[ Alzheimer’s disease ]
[Exosome-mediated secretion of Tau] [ 5-HT neurons loss ]
[ Activation of PKC, PKA, Erk2 ] [ Disruption of calcium homeostasis]
[Mitochondrial oxidative stress] [ NFkB activation ]

[ NLRP1/3 inflammasome activation]

Figure 1. Pathways and neurotransmitters involved in AD.
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The datasets utilized for the purposes of the present work were obtained from the
scREAD database [16] which encompasses both scRNA-seq and snRNA-seq datasets de-
rived from postmortem human brain tissue exhibiting AD and animal models with AD
pathology. Control datasets sourced from healthy, non-AD samples were also included.
By employing advanced computational methods, researchers can integrate scRNA-seq
datasets from various brain regions to form a holistic view of the disease. In a recent
work by our group, scRNA-seq data between the mice cortex and hippocampus from
healthy and AD samples have been compared, and differentially expressed genes were
observed, mainly enriched in muscarinic acetylcholine receptors, dopamine receptors,
and perisynaptic extracellular matrix [17]. The present study leverages computational
techniques to analyse scRNA-seq data from multiple brain regions impacted by AD and
reinforce existing studies that AD manifests differently in different brain regions and cell
types. RNA-seq can explore differential gene expression across multiple brain regions,
providing new challenges to identify key biological processes from a molecular perspective.
By synthesizing data across the entorhinal cortex, prefrontal cortex, superior frontal gyrus,
and superior parietal lobe, we aimed to build a comprehensive model of AD’s impact on
the brain’s cellular and molecular landscape. Through this approach, we emphasize the
potential of computational analyses to deepen our understanding of neurodegenerative
diseases such as AD. This allows for the comparison of cellular and molecular profiles
across different areas, identifying common and distinct elements of the pathology.

2. Materials and Methods
2.1. scRNA-seq Data Collection

The present study used scRNA-seq datasets from the scREAD database [16], com-
prising cells from four distinct human brain regions to explore the cellular and molecular
landscape of AD. More specifically, the analysis included selected datasets from the en-
torhinal cortex, prefrontal cortex, superior frontal gyrus, and superior parietal lobe, with
individual datasets representing both healthy and AD-affected subjects as previously out-
lined. For the entorhinal cortex, we included data from healthy control subjects (datasets
ADO00201 and AD00202) and compared it to data from subjects with AD (datasets AD00203,
AD00204, AD00205, and AD00206). In the case of the prefrontal cortex, the control group
comprised datasets AD01101 and AD01102, while the disease group included AD01103
and AD01104. The superior frontal gyrus control group data were sourced from dataset
ADO00801, and the disease group data were represented by AD00802 and AD00803. Lastly,
six datasets comprising cells from the superior parietal lobe were utilized; among these, two
datasets corresponded to control (AD01201 and AD01202) while the remaining four repre-
sented cells with AD pathology (AD01203, AD01204, AD01205, and AD01206). Regarding
the number of samples for each brain area: entorhinal cortex control: 27,892; entorhinal
cortex disease: 42,635; prefrontal cortex control: 29,752; prefrontal cortex disease: 18,326;
superior frontal gyrus control: 30,608; superior frontal gyrus disease: 50,256; superior
parietal lobe control: 411; superior parietal lobe disease: 2486.

2.2. Determination of the Optimal Number of Principal Components for Data Analysis

The determine_optimal_pcs function helps to find the best number of principal compo-
nents (PCs) for single-cell RNA sequencing data. This function uses the explained variance
from Principal Component Analysis (PCA) to find the minimum number of components
needed to explain a certain amount of total variance. This method avoids the manual
and subjective elbow method, making the process more objective and reproducible. The
function performs PCA on the dataset using the scanpy library’s sc.tl.pca function. The
number of components is set by n_pcs, and the variance explained by each component
is saved in the adata.uns[‘pca’][‘variance_ratio’] attribute. It then sums these variances
cumulatively. Using np.searchsorted, the function finds the smallest number of PCs needed
to exceed the variance_threshold. If the threshold is not reached within the computed



Information 2024, 15, 523

4of 16

components, it uses all components. Otherwise, it returns the optimal number of PCs
needed to surpass the threshold.

By automating the selection of the number of principal components, the function
reduces the need for manual intervention and subjective judgment. Using a consistent
and objective method for determining the optimal number of PCs ensures that results
are reproducible across different datasets and analyses. Automating the process allows
for quicker analysis, which is particularly beneficial when dealing with large datasets
typical in single-cell RNA sequencing. Additionally, users can easily adjust the n_pcs and
variance_threshold parameters to suit their specific needs and preferences

2.3. Identification and Correction of Batch Effects in scRNA-seq Datasets

Batch effects were managed using AnnData objects to integrate smoothly into scRNA-
seq analysis pipelines. Key steps included identifying, evaluating, and correcting batch
effects to ensure reliable downstream analyses. Initially, checks were conducted to de-
tect multiple batches, determining if batch correction was needed. If only a single batch
was present, the function ceased to conserve resources. UMAP was used for initial vi-
sualization, followed by ANOVA to detect batch effects, with p-values adjusted via the
Benjamini-Hochberg method. Correction methods, such as ‘combat” and "harmony’, were
offered for customized batch correction. Post-correction UMAP visualization confirmed
the effectiveness by eliminating distinct batch clusters, ensuring data homogenization for
subsequent analyses.

2.4. scRNA-seq Data Integration and Preprocessing Overview

To ensure the appropriate integration and traceability, each dataset was duplicated
and labelled with its brain region of origin. These datasets were then merged into a
unified AnnData object using the sc.concat function, preserving the variability and source
of each data point. Gene filtering was performed to harmonize the gene set across all
datasets, enabling reliable comparative analyses. Strict quality control (QC) metrics were
applied to remove outliers, targeting cells with abnormal gene counts or high mitochondrial
gene expression. Specifically, cells were filtered based on gene count (300 to 2500) and
mitochondrial gene expression (<10%) to exclude non-viable cells and potential doublets,
ensuring the dataset’s quality for accurate analysis.

2.5. Integration of Datasets from Various Brain Regions

The process began with normalization and logarithmic transformation to standard-
ize gene expression levels across cells, ensuring comparability. Normalization (using
sc.pp.normalize_total) with a target sum of 1 x 10* and logarithmic transformation (via
sc.pp-loglp) stabilized variance, making the data more homogeneous and ready for analysis
by mitigating technical disparities. Next, highly variable genes were identified and selected
to highlight biological signals amid technical noise, focusing on genes with significant
variability. This step is crucial for understanding the underlying biology of the sample.
Doublet detection and removal addressed artifacts from multiple cells being sequenced
as one. The remove_doublets function, using the Scrublet tool, predicted and eliminated
doublets from the dataset. Scrublet simulates doublet formation and assigns a doublet
score to each cell. Parameters like min_counts, min_cells, min_gene_variability_pctl, and
n_prin_comps were adjusted to fine-tune detection. Doublet scores and predictions were
annotated within the AnnData object for further validation. Finally, cells predicted as
doublets were filtered out, resulting in a purified dataset of putative singlets. This refined
dataset, free of doublet artifacts, was ready for accurate and reliable downstream analyses.

2.6. Clustering and Visualization

The Leiden clustering algorithm (sc.tl.leiden) applied to the control scRNA-seq dataset,
using a resolution of 0.5 and a random state of 5 for consistent clustering. This organized
the cells into distinct clusters based on gene expression profiles, identifying unique cell
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populations. Following clustering, Uniform Manifold Approximation and Projection
(UMAP) was used for dimensionality reduction, projecting gene expression data into two
dimensions. Clusters were colour-coded, and visualization enhancements included point
outlines, an on-plot legend, and a custom colour palette, improving clarity. To understand
the spatial distribution of clusters, a contingency table was constructed to examine their
distribution across brain areas. Clusters with cells from three or more brain areas indicated
broader representation and potential biological significance. Cells from these representative
clusters were retained, and the Leiden algorithm was re-applied with the same parameters.
This refined clustering accurately represented underlying biological diversity. The refined
clusters were visualized again in UMAP space for comparison, confirming clustering
robustness and providing deeper insights into cell population distribution. The Leiden
algorithm was chosen for its effective handling of scRNA-seq data. This algorithm can
explore clear and meaningful clusters, especially in large and complex datasets. It optimizes
modularity better than other methods, which means the clusters it finds are strong and
accurate. The Leiden algorithm’s design helps it find smaller groups within the data, giving
a detailed view of cellular differences. Additionally, it produces stable and repeatable
results, which is important for consistent outcomes in different analyses, making our
findings more reliable.

A differential gene expression analysis using the Wilcoxon rank-sum test (sc.tl.rank_
genes_groups) identified key marker genes for each cluster. These markers were visualized
using a dot plot, highlighting distinct gene expression patterns and facilitating specific cell
type identification. Clusters were annotated with cell type identities based on marker gene
profiles, including inhibitory neurons, microglia, astrocytes, and excitatory neurons. These
annotations were visualized in a UMAP plot, colour-coded by cell type, depicting their
distribution across the UMAP space. These comprehensive analyses and visualizations
provided a deep understanding of the cellular heterogeneity and molecular characteristics
within the control scRNA-seq dataset, offering valuable insights into the brain areas’ cellular
compositions and functional organizations, enhancing our understanding of the underlying
biology. The followed pipeline is summarized in Scheme 1.

Determination of .
the Optimal Identification and Integration of
Number of Principal |:> Correction of Batch |:> Datf'isets fro.m ::}
Components for Effects in Datasets Various Brain
Data Analysis Regions

Clustering and
Visualization

Scheme 1. scRNA-Seq data analysis flowchart used in this study.

3. Results

According to our analysis, findings are meticulously visualized through a series of
tools designed to enhance our interpretative ability. This includes the ranking of genes
associated with each cluster and the use of a heatmap, which illustrates the marker genes
and their expression patterns across the clusters. Through these visualization techniques,
we not only highlight the biological differences between distinct clusters but also underscore
the potential discovery of unique cellular identities or states. This comprehensive approach
significantly enriches our understanding of the dataset’s underlying biology, paving the
way for further explorations into the cellular intricacies of the brain. The series of graphs
represent a comparative analysis of gene expression distributions within individual clusters
against the backdrop of all other cells not included in those clusters (Figures 2 and S1).
Each plot is labelled with a cell identifier signifying the specific cluster being analysed
against the collective remainder of the dataset. In each subplot, the horizontal axis, marked
as ‘ranking’, orders the genes from left to right based on their relative importance or impact
within the cluster’s gene expression profile. The ‘score’ on the vertical axis quantifies the
level of differential expression, with higher scores potentially indicating a greater degree of
upregulation within the cluster compared to the rest of the cells.
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Figure 2. Differential expression of the top 10 ranked genes in each identified cell group compared to
the rest, as analysed in the AD dataset.

Points plotted in each graph, as Figure 2 shows, represent individual genes, with
their position reflecting their ranked relevance and expression score within the cluster. For
instance, a gene that appears toward the left with a high score is of substantial significance
within that cluster and shows a notably different expression level compared to cells outside
of the cluster. The discrete distribution of points across the ranking spectrum allows us to
discern which genes are most characteristic of each cluster. This comparative graphical
approach is invaluable for highlighting the genes that distinguish each cluster from the
rest, thereby providing a detailed view into the molecular identity of each cell population.
By observing the patterns and positions of these genes across the series of plots, researchers
can draw conclusions about the biological processes that may be predominant in each
cluster and identify potential targets for further experimental investigation.

Furthermore, an intuitive graphical representation to visualize gene expression across
distinct categories was performed using heatmaps, as Figure 3 illustrates. These values are
systematically arranged and grouped by specific categories, providing a clear differentiation
between different gene expression levels. Within this matrix plot, each column corresponds
to a category or cluster, such as different cell types, tissues, or experimental conditions. For
each cluster within the plot, the expression of genes is quantified in terms of fold change
values as a measurement comparing the expression level of a gene in one condition to
its level in a reference condition. A positive fold change value signifies that there is an
upregulation or increase in the expression of the gene within that cluster, suggesting that
the gene is more active compared to the reference condition. Conversely, a negative fold
change indicates a downregulation or decrease in gene expression, implying that the gene is
less active or potentially repressed in the compared condition. This differential expression
analysis, highlighted through Figure 3, enables us to identify genes that show significant
changes in expression across different categories or conditions, facilitating insights into
biological processes and disease mechanisms.
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Figure 3. Heatmap of the log fold changes in gene expression (A) for the top 10 differentially
expressed genes across four cell groups within the control dataset, (B) for the top 10 differentially
expressed genes across five cell groups within the AD dataset.

Figure 4 shows dot blot for summarizing the expression of each gene across all cells
within a group and visualizes scRNA-seq expression data across different clusters. Cell
groups are shown along the horizontal axis, and genes are arranged along the vertical
axis. The dendrogram at the top represents hierarchical clustering based on expression
profiles, grouping similar expression patterns together. The size of each dot indicates the
fraction of cells within a group expressing the gene marker (with the percentage scale
shown in the top right corner), while the colour intensity represents the mean expression
level of the gene in that specific group (as indicated by the colour scale at the bottom).
This visualization facilitates the assessment of both the prevalence and intensity of gene
expression across different groups, providing insights into the dynamics of gene expression
and cellular diversity within the sample. In our analysis, the dot plot was standardized
by variance to enable comparison across different genes. Additionally, dot plots, as illus-
trated in Figures S2 and S3, provide an insightful visualization of scRNA-seq expression
data across various clusters, facilitating comparisons between control and disease groups.
Figure S2 displays the expression patterns of key genes across different cell types within
the control group, including inhibitory neurons, excitatory neurons, astrocytes, oligoden-
drocyte precursor cells, oligodendrocytes, and microglial cells. Figure S3 presents the dot
plot for the disease group, highlighting alterations in gene expression patterns due to the
pathological condition. Significant alterations in the expression levels and prevalence of
specific genes across cell types are evident when compared to the control group. These
dot plots are an invaluable tool for visualizing the complexity of gene expression across
different cell populations, offering a thorough overview of cellular heterogeneity and the
effects of disease on gene expression dynamics.

Furthermore, violin plots as Figure 5 shows, display the distribution of expression
levels for the top five differentially expressed genes in each group compared to the rest
of the groups in the control dataset. The width of each plot indicates the density of cells
at different expression levels, while the split view highlights differences between the two
conditions being compared.
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Figure 4. A dot plot visualization of scRNA-seq data. (A) Dot plot presents the differential expression
of the top five genes within each of the four cell groups in the control dataset. (B) Dot plot depicts the
differential expression of the top five genes within each of the cell groups in the AD dataset.
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Figure 5. Violin plots display the distribution of expression levels for the top 10 differentially
expressed genes (A) in cell-type astrocytes compared to the rest of the groups in the control dataset,
(B) in cell-type inhibitor neurons compared to the rest of the groups in the control dataset, (C) in
cell-type astrocytes compared to the rest of the groups in the disease dataset and (D) in excitatory
neurons compared to the rest of the groups in the disease dataset.
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Lastly, we merged the newly created AnnData (adata) objects for both the control and
disease groups into a single adata object, following to the same analytical procedures as
previously established (Figure 6). The integration facilitates a focused comparison of cells
present in both the control and AD conditions, allowing us to pinpoint genes that exhibit
significant differences between these groups. By concentrating on these particular cells, we
tried to uncover crucial genetic markers that may elucidate the underlying mechanisms of
disease progression or resilience. This comparative approach is instrumental in distinguish-
ing the genetic expressions that are pivotal in disease manifestation compared to normal
physiological states.

A control vs. rest disease vs. rest
48 4
47 4
-
Q ©
2 2 o
46 a Q x
s | =1 47 -
[}
S
45 S o o < o
w0 O — < a
4 o 4 — =]
L u 46 G} = = | O
3
43
45
10
2 2
(U]
n
2 E 44
o
; : " : & " v : : !
0 1 2 3 4 0 1 2 3 4
ranking ranking
B B 1
= 3
2
8 5
I I |
control
Log Fold Changes
disease -—-

-25 00 25

HHHHHHHH

LCN8
CCR1
CTB-25B13.12
AZGP1
ADAM33 -
KLK6
RP11-553L6.5
Cl150rf52
ANKFNL
ROR1
METRNL
PLCB2
GPsM3
NKILA
L1A
CIDEB
MYcL
RP11-73K9.3
RP11-315A16.
ARHGEF40
TLE2
HRH3
DHRS13
SPATAL3
HEPN1
PNE2

Figure 6. (A) Differential expression of the top five ranked genes in each condition compared to the
other. (B) Heatmap of the log fold changes in gene expression between control and disease condition.

Across various classifiers, including K Neighbors Classifier, Extreme Gradient Boost-
ing, Decision Tree Classifier, and Gradient Boosting Classifier, the analysis reveals consis-
tently high values for accuracy and AUC scores. These metrics indicate robust discrimi-
native capabilities in distinguishing between healthy and disease conditions based on the
gene expression data (Figure 7). Furthermore, these classifiers demonstrate balanced per-
formance in terms of recall, precision, and F1 score, highlighting their ability to effectively
identify positive cases while minimizing false positives. Strong agreement metrics such as
Kappa and MCC further validate the reliability of these classifiers, suggesting consistent
and balanced predictions across different models. While there are variations in training
times among the models, it's noteworthy that models like Extreme Gradient Boosting
exhibit both high accuracy and efficiency, achieving remarkable results within a reasonable
timeframe. Our analysis was facilitated by the PyCaret library (PyCaret version 3.3.2), a
versatile and user-friendly tool for streamlined machine learning experimentation. PyCaret
automates various aspects of the machine learning workflow, including data preprocessing,
feature selection, model training, hyperparameter tuning, and model evaluation. Its intu-
itive interface and extensive suite of functionalities enable researchers to efficiently explore
multiple models, compare their performance, and derive actionable insights from the data.

By leveraging PyCaret’s capabilities, we were able to conduct a thorough evaluation of
different classifiers on the gene expression dataset, facilitating informed decision-making
and accelerating the research process. The library’s comprehensive documentation and
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extensive support for a wide range of machine learning tasks make it an invaluable re-
source for both novice and experienced practitioners in the field. Beyond the quantitative
metrics, our computational analysis offers deeper insights into the underlying biologi-
cal mechanisms.

Model Accuracy AUC Recall Prec. F1 Kappa MCC

lightgbm Light Gradient Boosting Machine 0.9854 0.9988 0.9854 0.9857 0.9854 0.9683 0.9686

knn K Neighbors Classifier 0.9825 0.9958 0.9825 0.9832 0.9826 0.9623 0.9629
xgboost  Extreme Gradient Boosting 0.9810 0.9983 0.9810 0.9818 0.9811 0.9592 0.9598
dt Decision Tree Classifier 0.9796 0.9779 09796 0.9796 0.9796 0.9557 0.9557
gbe Gradient Boosting Classifier 0.9796 0.9981 0.9796 0.9804 0.9797 0.9561 0.9567
nb Naive Bayes 0.9664 0.9959 0.9664 0.9698 0.9668 0.9290 0.9318
ridge Ridge Classifier 0.9650 0.9732 0.9650 0.9657 0.9647 0.9230 0.9242
Ida Linear Discriminant Analysis 0.9650 0.9731 0.9650 0.9656 0.9648 0.9234 0.9243
qda Quadratic Discriminant Analysis  0.9620 0.9935 0.9620 0.9650 0.9624 0.9194 0.9217
svm SVM - Linear Kernel 0.9562 0.9746 0.9562 0.9574 0.9564 0.9059 0.9068
Ir Logistic Regression 0.9182 0.9783 0.9182 0.9259 0.9193 0.8285 0.8339
rf Random Forest Classifier 0.9095 0.9997 0.9095 0.9280 09111 0.8141 0.8288
et Extra Trees Classifier 0.8891 0.9999 0.8891 0.9158 0.8912 0.7750 0.7958
ada Ada Boost Classifier 0.3606 0.9983 0.3606 0.1300 0.1911 0.0000 0.0000
dummy  Dummy Classifier 0.3606 0.5000 0.3606 0.1300 0.1911 0.0000 0.0000

Figure 7. A comprehensive analysis of performance metrics derived from various classifiers employ-
ing gene expression data from the condition dataset to classify individuals into healthy or disease
conditions. Different trained models where the highlighted metrics indicate best score. The analysis
was conducted using the PyCaret library.

In addition to these metrics, the confusion matrix offers a detailed view of each
classifier’s performance by illustrating the true positive, true negative, false positive, and
false negative rates. Figure 8 shows the confusion matrix for the Custom Probability
Threshold Classifier which highlights its impressive ability to correctly classify instances.
This classifier refers to the method of converting predicted probabilities into class labels
based on a specified threshold. By default, this threshold is set at 0.5, which means that
any predicted probability above 0.5 is classified as positive, while those below 0.5 are
classified as negative. In our analysis, we customized this threshold to 0.7 indicating
that only predictions with a probability above 0.7 are classified as positive, making the
classification criteria more stringent. The classifier achieved 978 true negatives indicating
a high accuracy in identifying healthy samples. Furthermore, the 1726 true positives
demonstrate its robustness in detecting disease conditions accurately. The minimal number
of false negatives (28) and false positives (10) underscore the classifier’s precision, ensuring
that most positive identifications are correct while very few actual positive cases are
missed. This high precision and recall combination corroborates the elevated F1 score
observed in the evaluation metrics. The confusion matrix thus provides a granular insight
into the classifier’s performance, revealing its effectiveness in maintaining a low false-
positive rate, which is crucial for reducing unnecessary follow-up tests and treatments.
Simultaneously, the low false-negative rate ensures that most disease cases are correctly
identified, highlighting the model’s reliability and robustness in practical applications.
These detailed breakdowns affirm the classifier’s utility in real-world scenarios, where
accurate and reliable predictions are paramount.
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CustomProbability ThresholdClassifier Confusion Matrix

True Class

Predicted Class

Figure 8. Confusion matrix for the Custom Probability Threshold Classifier.

We further utilized various libraries to identify pathways associated with upreg-
ulated and downregulated genes (Tables S1 and S2, respectively). Reactome pathway
analysis showed that upregulated DEGs were mainly enriched in pathways such as G-
alpha (I) signalling Events, transcription of neuronal ligands, interleukin-1 processing,
caspase-mediated cleavage of cytoskeletal proteins and GPCR downstream signalling,
while WikiPathway showed enrichment in neuroinflammation and glutamatergic sig-
nalling, interleukin-1 induced activation of NF-kB, and the IL-10 anti-inflammatory sig-
nalling pathway. The enriched gene ontology (GO) terms were divided into biological
processes (BP), and the results of GO analysis revealed that upregulated DEGs were mainly
enriched in BPs including positive regulation of gene expression, response to metal ions,
and positive regulation of protein transport. On the other hand, downregulated genes were
mainly enriched in neurotrophin, P75 N'TR receptor-mediated signalling, LTC4-CYSLTR
mediated IL4 production, and transcription of neuronal ligands, according to Reactome
analysis and in Wnt signaling, the chemokine signaling pathway, and the leukotriene
metabolic pathway (WikiPathway). BP analysis indicated that DEGs were significantly
enriched in the leukocyte apoptotic process, glutathione catabolic process, and positive
regulation of the ERK1 and ERK2 cascades.

This study provides a detailed analysis of AD by identifying key differentially ex-
pressed genes across multiple brain regions, shedding light on the intricate molecular
dynamics associated with the disease’s pathology. Our findings, particularly in the upregu-
lation of genes like GSN and TTN in pathways associated with amyloidosis, muscle stretch
and cardiac muscle contraction, reveal potent therapeutic targets. Additionally, the positive
regulation of gene expression by genes such as CCDC88B and IL1A suggests new ways for
modulating gene expression in positive regulation of T-cell maturation and inflammatory
function. Notably, the identification of pathways related to neuroinflammation and gluta-
matergic signalling, featuring genes like IL1A, GRM4, and SST, emphasizes their potential
role in AD’s systemic pathological processes. These pathways are consistently altered across
the studied regions, underscoring the importance of targeting these molecular mechanisms
to mitigate the disease’s progression. The regional expression of genes such as HDAC1 and
ARHGEF40, involved in downregulation pathways like death receptor signalling and p75
NTR receptor-mediated signalling, hints at a complex regulatory mechanism that might
confer specific regional vulnerabilities or resilience to AD pathology (Figure 9).
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= G-alpha (1) signalling = |L-10 anti-inflammatory signalling

= transcription of neuronal ligands = p75 NTR receptor-mediated signalling
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= caspase-mediated cleavage of cytoskeletal
proteins

chemokine signalling pathway

.
GPCR downstreamsignalling * leukocyte apoptotic process

neuroinflammation = glutathione catabolic process
.

glutamatergic signalling positive regulation of ERK1 And ERK2 cascade
interleukin-1induced activation of NF-kB

Figure 9. Pathways in which DEGs were primarily enriched according to our analysis.

4. Discussion

The present work includes data integration and analysis of specific scRNA-seq datasets
from multiple brain regions associated with AD pathology. This approach seeks to provide
a systemic view of the disease’s impact across different human brain regions, leveraging
data to uncover insights that have not been previously recognized due to the isolated
nature of earlier analyses. This approach underscores the potential of computational anal-
yses to deepen our understanding of AD from a holistic perspective, providing valuable
insights that could lead to the development of targeted molecular interventions. Specif-
ically, the study intends to achieve the following pillars: 1. Data Integration: Combine
scRNA-seq datasets from critical brain regions such as the entorhinal cortex, prefrontal
cortex, superior frontal gyrus, and superior parietal lobe. This integrated analysis will
allow for a comparative assessment of cellular and molecular features across these regions,
enhancing our understanding of how AD manifests differently in various parts of the brain.
2. Computational Analysis: Utilize computational methods to analyse these integrated
datasets, focusing on identifying common and region-specific molecular signatures that
characterize AD. This includes the application of batch effect correction, normalization,
dimensionality reduction, and clustering algorithms to synthesize and interpret the com-
plex data. 3. Insight Development: While not generating new experimental results, the
study aims to derive novel insights into the pathology of AD by reanalysing existing data.
This will include identifying patterns and correlations that may have been overlooked in
previous studies that focused on single datasets or regions. 4. Therapeutic Implications:
Explore potential therapeutic targets by understanding the molecular mechanisms across
the brain’s affected regions. Identifying pathways that are consistently altered in these
regions could highlight targets for therapeutic interventions that might be effective across
the broader spectrum of AD pathology. 5. Methodological Contribution: Demonstrate the
power and utility of computational methods in the integration and analysis of complex
and large-scale biological data. The study will showcase how computational approaches
can be used to enhance the value of existing datasets, providing a blueprint for similar
future studies in neurodegenerative diseases and beyond. By meeting these objectives, the
study will significantly enrich our understanding of AD, offering value for future research
into comprehensive and targeted treatments. It seeks to establish a new standard for the
effective application of computational analysis in interpreting and integrating diverse
biological data, thus paving the way for novel avenues in research and therapeutic ad-
vancements. According to Q-Q plot, significant deviations from the normal distribution are
indicated, suggesting that gene expression data are not normally distributed. Additionally,
the histogram shows a sharp peak around zero with a rapid drop-off, indicating that most
data points are concentrated near this value, which further supports the non-normality
of the distribution. Given these observations, it is clear that gene expression data do not
follow a normal distribution. The Wilcoxon rank-sum test is a non-parametric method,
meaning it does not assume normality in the data. Therefore, it is a suitable and robust
choice for our analysis, allowing us to accurately identify differentially expressed genes
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without being affected by the non-normal distribution of the data. As Figure S4 shows, the
significant deviations from normality observed in both the Q—Q plot and histogram justify
the use of the Wilcoxon rank-sum test for differential gene expression analysis in our study.

While we refrain from making direct assertions about specific genes’ diagnostic poten-
tial, our approach sheds light on the computational indicators that might point towards
important genetic markers associated with the conditions under study. By leveraging ad-
vanced machine learning techniques and comprehensive evaluation strategies, our analysis
provides a nuanced understanding of the gene expression patterns characteristic of different
conditions. These findings not only contribute to our understanding of the molecular under-
pinnings of disease, but also offer valuable guidance for future research endeavours. Rather
than as a conclusive diagnostic marker, our computational analysis serves as a powerful
exploratory tool, indicating potential candidate genes worthy of further investigation. This
nuanced approach underscores the importance of integrating computational methods with
traditional experimental techniques in unravelling the complexities of disease mechanisms.

AD, the most prevalent cause of dementia among older adults, poses significant
challenges due to its intricate and multifactorial nature. With genetic, environmental, and
molecular factors contributing to it, unravelling the pathogenesis of AD and developing
effective treatments is a persistent and complex endeavour [18,19]. The advent of scRNA-
seq technology provides a methodology to explore the cellular heterogeneity of the tissue,
by profiling tens of thousands of individual cells, and has opened new ways for exploring
the molecular details of diseases with unprecedented precision [6]. More precisely, through
scRNA-seq, researchers can probe the cellular diversity, offering a comprehensive approach
the specific cellular environmental conditions that contribute to disease progression [20].
Recent technological advances have particularly enhanced our ability to discern subtle
variations in gene expression across individual cells, which is crucial for identifying the
molecular signatures associated with AD. However, the use of scRNA-seq in AD has
been primarily restricted to isolated analyses of specific brain regions or datasets [21,22].
A comprehensive, integrated examination across multiple affected regions remains rare,
which limits our understanding of the systemic and regional impacts of the disease across
the brain’s complex landscape.

By integrating data, computational analysis revealed novel molecular signatures,
validating observed patterns as authentic biological phenomena rather than artifacts of
data manipulation. This step is necessary in preventing any overlap or confusion during
the merging process, guaranteeing that each cell, now part of a larger dataset, retains a
distinct identity. This clear delineation is fundamental for subsequent analyses, ensuring
that data from disparate datasets can be accurately compared. This rigorous approach
not only bolsters the credibility of our findings but also establishes a methodological
blueprint for future studies aiming to decode the complex molecular landscape of AD. By
integrating insights from external studies indicating distinct transcriptional networks in
AD, particularly within neuronal and glial populations, we corroborate our findings within
a broader scientific context [10]. Furthermore, the dynamic perspective on gene expression,
highlighted through RNA velocity studies, complements our static analysis by illustrating
the importance of temporal dynamics in understanding cellular responses in AD [14].

Blood-based biomarkers, especially immune-related ones, could provide a more ac-
cessible and cost-effective solution for early AD detection. In a recent work, advances
in understanding brain-immune interactions and how machine learning can combine
various biomarkers and demographic information to improve early diagnosis is discussed.
Furthermore, mechanistic modelling techniques for analysing cell dynamics are explored,
highlighting the potential of immune-related blood biomarkers for early AD diagnosis [23].
The clinical implications of discovering new diagnostic markers or therapeutic targets are
crucial. Baheti et al. highlight the advantages of molecular modelling methods, which
offer a faster and more efficient way to design drugs with improved efficacy and ethical
considerations compared to traditional approaches. Researchers are increasingly adopting
these advanced methods to better address AD and other diseases [24]. Looking forward,
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the framework developed in the present work promises to be a robust analytical tool for
comparing cellular and molecular changes between AD patients and healthy controls. This
comparative analysis can shed light not only the specific pathological triggers associated
with AD but also on potential resilience factors found within the control group. Such
insights could inspire the development of focused interventions aimed at replicating these
resilience factors in susceptible populations. Moreover, by harnessing this methodology,
future research can leverage scRNA-seq data to gain a systemic view of AD’s impact across
different brain regions [25]. This approach will enable a deeper understanding of the dis-
ease at a cellular level, paving the way for precision medicine strategies that are fine-tuned
to the molecular profiles observed in individual patients [26]. However, this study does
face limitations, primarily due to its reliance on existing datasets, which may not capture
the full spectrum of cellular diversity in AD pathology. The analytical methods, while
sophisticated, also depend heavily on the quality and completeness of the data integrated
into our study. Future research should aim to include more diverse datasets, potentially
incorporating longitudinal data to observe the progression of AD over time, which could
provide further insights into the dynamics of the disease’s development.

5. Conclusions

Herein, a comprehensive approach for integrating scRNA-seq datasets from various
control samples corresponding to different regions of the human brain was carried out.
The analysis was performed in order to identify commonalities or discrepancies across
distinct brain regions, which requires meticulous preprocessing to ensure data quality
and comparability. Through this process, the capabilities of scRNA-seq to bridge this
gap were harnessed by providing a detailed, cross-regional analysis of the brain regions
most affected by AD, including the entorhinal cortex, prefrontal cortex, superior frontal
gyrus, and superior parietal lobe. By utilizing sophisticated machine learning methods,
conducting a thorough evaluation of different classifiers on the gene expression dataset
and thorough evaluation approaches, our analysis offers detailed insight into the gene
expression patterns specific to various conditions. The present computational analysis,
empowered by the PyCaret library, offers valuable insights into the genetic signatures
associated with different conditions and enables us to assess the cellular and molecular
alterations between individuals with AD and healthy control subjects, highlighting the
unique and overlapping pathways of degeneration across different brain regions. By
merging and analysing data from disparate regions, the present study leverages existing
scRNA-seq datasets highlighting the potential of computational analysis to provide deep
insights into the complex biology of AD from a multi-regional point of view. Moreover,
an integration of control and diseased datasets of all regions was performed, and gene
expression disparities between healthy cells and those of the AD-affected condition were
conducted. These findings pave the way for further research into identifying and validating
key genetic markers for diseases, ultimately advancing our understanding of disease
pathology and informing future clinical diagnostics and therapeutic interventions.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/info15090523 /s1; Figure S1: Differential expression of the top
10 ranked genes in each identified cell group compared to the rest, as analysed in the control dataset;
Figure S2: Dot plots show the cells category based on most expressed genes in the control group;
Figure S3: Dot plots show the cells category based on most expressed genes in the disease group;
Figure S4: Q-Q plot and histogram justify the use of the Wilcoxon rank-sum test for differential gene
expression analysis in our study; Table S1: Pathways for upregulated genes; Table S2: Pathways for
downregulated genes.

Author Contributions: Conceptualization, M.G K.; methodology, PK. and M.G.K.; software, PK.;
validation, PK. and M.G K.; formal analysis, PK. and M.G.K; data curation, PK. and M.G.K,; writing—
original draft preparation, PK. and M.G.K,; writing—review and editing, T.P.E. and P.V,; funding
acquisition, P.V. All authors have read and agreed to the published version of the manuscript.


https://www.mdpi.com/article/10.3390/info15090523/s1
https://www.mdpi.com/article/10.3390/info15090523/s1

Information 2024, 15, 523 150f 16

Funding: This work was supported by the European Union-Next Generation EU, Greece 2.0 National
Recovery and Resilience Plan Flagship program TAEDR-0535850.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: This study used already available data from the scREAD database. No
new data were created.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.  Fan, L.;Mao, C,; Hu, X,; Zhang, S.; Yang, Z.; Hu, Z; Sun, H.; Fan, Y;; Dong, Y.; Yang, J.; et al. New insights into the pathogenesis
of Alzheimer’s disease. Front. Neurol. 2020, 10, 1312. [CrossRef]

2. Guo, T,; Zhang, D.; Zen, Y.; Huang, T.Y.; Xu, H.; Zhao, Y. Molecular and cellular mechanisms underlying the pathogenesis of
Alzheimer’s disease. Mol. Neurodegener. 2020, 15, 1-37.

3. Breijyeh, Z.; Karaman, R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules 2020, 25, 5789.
[CrossRef] [PubMed]

4. Chen, G.; Ning, B.; Shi, T. Single-cell RN A-seq technologies and related computational data analysis. Front. Genet. 2019, 10,
441123. [CrossRef] [PubMed]

5. Angerer, P; Simon, L.; Tritschler, S.; Wolf, F.A.; Fischer, D.; Theis, E]J. Single cells make big data: New challenges and opportunities
in transcriptomics. Curr. Opin. Syst. Biol. 2017, 4, 85-91. [CrossRef]

6. Jovic, D.; Liang, X.; Zeng, H.; Lin, L.; Xu, F; Luo, Y. Single-cell RNA sequencing technologies and applications: A brief overview.
Clin. Transl. Med. 2022, 12, e694. [CrossRef]

7. Luquez, T.; Gaur, P.,; Kosater, LM.; Lam, M.; Lee, D.I.; Mares, J.; Paryani, F; Yadav, A.; Menon, V. Cell type-specific changes
identified by single-cell transcriptomics in Alzheimer’s disease. Genome Med. 2022, 14, 136. [CrossRef]

8.  Saura, C.A,; Deprada, A.; Capilla-Lépez, M.D.; Parra-Damas, A. April. Revealing cell vulnerability in Alzheimer’s disease by
single-cell transcriptomics. Semin. Cell Dev. Biol. 2023, 139, 73-83. [CrossRef]

9.  Lampinen, R,; Fazaludeen, M.F,; Avesani, S.; Ord, T,; Penttild, E.; Lehtola, ].M.; Saari, T.; Hannonen, S.; Saveleva, L.; Kaartinen, E.;
et al. Single-cell RNA-Seq analysis of olfactory mucosal cells of Alzheimer’s disease patients. Cells 2022, 11, 676. [CrossRef]

10. Soreq, L.; Bird, H.; Mohamed, W.; Hardy, ]. Single-cell RNA sequencing analysis of human Alzheimer’s disease brain samples
reveals neuronal and glial specific cells differential expression. PLoS ONE 2023, 18, e0277630. [CrossRef]

11.  Aslanis, I; Krokidis, M.G.; Dimitrakopoulos, G.N.; Vrahatis, A.G. Identifying Network Biomarkers for Alzheimer’s Disease Using
Single-Cell RNA Sequencing Data. In Worldwide Congress on “Genetics, Geriatrics and Neurodegenerative Diseases Research”; Springer
International Publishing: Cham, Switzerland, 2022; pp. 207-214.

12.  Krokidis, M.G.; Vrahatis, A.G.; Lazaros, K.; Vlamos, P. Exploring Promising Biomarkers for Alzheimer’s Disease through the
Computational Analysis of Peripheral Blood Single-Cell RNA Sequencing Data. Appl. Sci. 2023, 13, 5553. [CrossRef]

13.  Pushparaj, PN.; Kalamegam, G.; Wali Sait, K.H.; Rasool, M. Decoding the role of astrocytes in the entorhinal cortex in Alzheimer’s
disease using high-dimensional single-nucleus RNA sequencing data and next-generation knowledge discovery methodologies:
Focus on drugs and natural product remedies for dementia. Front. Pharmacol. 2022, 12, 720170. [CrossRef]

14. Adewale, Q.; Khan, A.F; Bennett, D.A; Iturria-Medina, Y. Single-nucleus RNA velocity reveals critical synaptic and cell-cycle
dysregulations in neuropathologically confirmed Alzheimer’s disease. Sci. Rep. 2024, 14, 7269. [CrossRef]

15. Guennewig, B.; Lim, J.; Marshall, L.; McCorkindale, A.N.; Paasila, PJ.; Patrick, E.; Kril, J.J.; Halliday, G.M.; Cooper, A.A,;
Sutherland, G.T. Defining early changes in Alzheimer’s disease from RNA sequencing of brain regions differentially affected by
pathology. Sci. Rep. 2021, 11, 4865.

16. Jiang, J.; Wang, C.; Qi, R.; Fu, H.; Ma, Q. scREAD: A single-cell RNA-Seq database for Alzheimer’s disease. iScience 2020, 23,
101769. [CrossRef] [PubMed]

17.  Krokidis, M.G.; Vrahatis, A.G.; Lazaros, K.; Skolariki, K.; Exarchos, T.P.; Vlamos, P. Machine Learning Analysis of Alzheimer’s
Disease Single-Cell RNA-Sequencing Data across Cortex and Hippocampus Regions. Curr. Issues Mol. Biol. 2023, 45, 8652-8669.
[CrossRef] [PubMed]

18. Ibanez, L.; Cruchaga, C.; Ferndndez, M.V. Advances in genetic and molecular understanding of Alzheimer’s disease. Genes 2021,
12, 1247. [CrossRef]

19. Zhang, X.X; Tian, Y.; Wang, Z.T.; Ma, Y.H.; Tan, L.; Yu, ].T. The epidemiology of Alzheimer’s disease modifiable risk factors and
prevention. J. Prev. Alzheimer’s Dis. 2021, 8, 313-321. [CrossRef]

20. Choi, Y.H.; Kim, J.K. Dissecting cellular heterogeneity using single-cell RNA sequencing. Mol. Cells 2019, 42, 189-199.

21. Piwecka, M.; Rajewsky, N.; Rybak-Wolf, A. Single-cell and spatial transcriptomics: Deciphering brain complexity in health and
disease. Nat. Rev. Neurol. 2023, 19, 346-362. [CrossRef]

22.  Mathys, H.; Davila-Velderrain, J.; Peng, Z.; Gao, F,; Mohammadji, S.; Young, J.Z.; Menon, M.; He, L.; Abdurrob, F.; Jiang, X.; et al.

Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 2019, 570, 332-337. [CrossRef] [PubMed]


https://doi.org/10.3389/fneur.2019.01312
https://doi.org/10.3390/molecules25245789
https://www.ncbi.nlm.nih.gov/pubmed/33302541
https://doi.org/10.3389/fgene.2019.00317
https://www.ncbi.nlm.nih.gov/pubmed/31024627
https://doi.org/10.1016/j.coisb.2017.07.004
https://doi.org/10.1002/ctm2.694
https://doi.org/10.1186/s13073-022-01136-5
https://doi.org/10.1016/j.semcdb.2022.05.007
https://doi.org/10.3390/cells11040676
https://doi.org/10.1371/journal.pone.0277630
https://doi.org/10.3390/app13095553
https://doi.org/10.3389/fphar.2021.720170
https://doi.org/10.1038/s41598-024-57918-x
https://doi.org/10.1016/j.isci.2020.101769
https://www.ncbi.nlm.nih.gov/pubmed/33241205
https://doi.org/10.3390/cimb45110544
https://www.ncbi.nlm.nih.gov/pubmed/37998721
https://doi.org/10.3390/genes12081247
https://doi.org/10.14283/jpad.2021.15
https://doi.org/10.1038/s41582-023-00809-y
https://doi.org/10.1038/s41586-019-1195-2
https://www.ncbi.nlm.nih.gov/pubmed/31042697

Information 2024, 15, 523 16 of 16

23. Krix, S.; Wilczynski, E.; Falgas, N.; Sanchez-Valle, R.; Yoles, E.; Nevo, U.; Baruch, K.; Frohlich, H. Towards early diagnosis of
Alzheimer’s disease: Advances in immune-related blood biomarkers and computational approaches. Front. Immunol. 2024, 15,
1343900. [CrossRef] [PubMed]

24. Baheti, K.; Kale, M. Methodologies Related to Computational Models in View of Developing Anti-Alzheimer Drugs: An Overview.
Curr. Drug Discov. Technol. 2019, 16, 66-73. [CrossRef] [PubMed]

25. Johnson, T.S.; Xiang, S.; Helm, B.R.; Abrams, Z.B.; Neidecker, P.; Machiraju, R.; Zhang, Y.; Huang, K.; Zhang, ]. Spatial cell
type composition in normal and Alzheimer’s human brains is revealed using integrated mouse and human single cell RNA
sequencing. Sci. Rep. 2020, 10, 18014. [CrossRef]

26. Kim, D,; Tran, A,; Kim, H.J; Lin, Y;; Yang, ].Y.H.; Yang, P. Gene regulatory network reconstruction: Harnessing the power of
single-cell multi-omic data. NPJ Syst. Biol. Appl. 2023, 9, 51. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.3389/fimmu.2024.1343900
https://www.ncbi.nlm.nih.gov/pubmed/38720902
https://doi.org/10.2174/1570163815666180417120833
https://www.ncbi.nlm.nih.gov/pubmed/29663890
https://doi.org/10.1038/s41598-020-74917-w
https://doi.org/10.1038/s41540-023-00312-6

	Introduction 
	Materials and Methods 
	scRNA-seq Data Collection 
	Determination of the Optimal Number of Principal Components for Data Analysis 
	Identification and Correction of Batch Effects in scRNA-seq Datasets 
	scRNA-seq Data Integration and Preprocessing Overview 
	Integration of Datasets from Various Brain Regions 
	Clustering and Visualization 

	Results 
	Discussion 
	Conclusions 
	References

