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Abstract: Invasive diagnostic techniques, while offering critical insights into disease patho-
physiology, are often limited by high costs, procedural risks, and patient discomfort.
Non-invasive biomarkers represent a transformative alternative, providing diagnostic
precision through accessible biological samples or physiological data, including blood,
saliva, breath, and wearable health metrics. They encompass molecular and imaging ap-
proaches, revealing genetic, epigenetic, and metabolic alterations associated with disease
states. Furthermore, advances in breathomics and gut microbiome profiling further expand
their diagnostic scope. Even with their strengths in terms of safety, cost-effectiveness, and
accessibility, non-invasive biomarkers face challenges in achieving monitoring sensitivity
and specificity comparable to traditional clinical approaches. Computational advance-
ments, particularly in artificial intelligence and machine learning, are addressing these
limitations by uncovering complex patterns in multi-modal datasets, enhancing diagnostic
accuracy and facilitating personalized medicine. The present review integrates recent
innovations, examines their clinical applications, highlights their limitations and provides
a concise overview of the evolving role of non-invasive biomarkers in precision diagnostics,
positioning them as a compelling choice for large-scale healthcare applications.
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1. Introduction
Invasive diagnostic techniques have consistently been vital in assessing and managing

a wide range of diseases, providing valuable insights into the underlying pathophysiologi-
cal processes. The use of biopsies, endoscopies and surgical explorations ensures precise
diagnosis and significantly informs clinical decision-making. However, these methods are
often associated with substantial disadvantages, including high costs, procedural risks,
significant patient discomfort, and logistical complexities in healthcare systems [1,2]. These
challenges not only discourage patients from timely diagnostic evaluations but also burden
healthcare systems, especially in resource-constrained settings, delaying the initiation of
necessary treatments. This situation highlights the pressing need for alternative diagnos-
tic strategies that emphasize accessibility, patient comfort, and cost-effectiveness while
maintaining high diagnostic standards. In recent years, non-invasive biomarkers have
gained significant attention as a viable alternative, offering the potential to circumvent
the drawbacks of invasive procedures. These biomarkers are measurable indicators de-
rived from easily obtainable biological samples or physiological data, such as blood, urine,
saliva, stool, sweat, breath, and digital health metrics like heart rate variability [3–5]. By
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providing insights into molecular, cellular, and systemic processes without the need for
physically intrusive interventions, non-invasive biomarkers represent a transformative
shift in diagnostic methodologies. Non-invasive biomarker methodologies encompass a
diverse range of approaches, each offering unique insights into health and disease states.
Molecular biomarkers, such as circulating tumor DNA (ctDNA) and microRNAs, derived
from blood and other bodily fluids without interventional procedure, reveal genetic mu-
tations, epigenetic changes, and transcriptional anomalies. Proteomic biomarkers, which
include proteins and peptides, help uncover disease pathways and inflammatory responses.
Metabolomic biomarkers, focusing on small molecules and metabolites, provide a dynamic
view of metabolic shifts linked to conditions like cancer, cardiovascular diseases, and
diabetes [6,7]. Beyond molecular biomarkers, imaging techniques, such as MRIs, X-rays,
and CT scans, play a pivotal role in identifying structural and functional changes in the
body [8–10].

In recent years, significant progress has been made in non-invasive biomarker detec-
tion through advancements in fields such as magnetoresistance-based and graphene-based
biosensor technologies, among others. MR biosensors have expanded their applications
to include the detection of magnetic nanoparticles, proteins, and DNA, and even the
mapping of cardiovascular and brain signals by refining sensor geometries, optimizing
surface modifications, and integrating magnetic flux concentrators and microfluidic chan-
nels. At the same time, graphene-based biosensors have leveraged graphene’s high specific
surface area and exceptional electronic properties to quantitatively detect cancer-related
biomarkers such as DNA, miRNA, small molecules, and proteins using diverse signal
output techniques like fluorescence, electrochemistry, surface plasmon resonance, and
surface-enhanced Raman scattering [11,12].

The present review aims to present a holistic examination of the latest advantages in
diverse clinical conditions along with well-established computational methods, including
machine learning techniques and tools that are recurrently applied, shedding light on the
analytical frameworks underpinning non-invasive biomarker examination. By examining
technological breakthroughs and clinical applications, this work attempts to highlight the
transformative effects of non-invasive biomarkers, identify their limitations and propose
future research directions.

2. The Non-Invasive Perspective in Diagnostics and Data Analysis
A comprehensive exploration of non-invasive approaches and related in silico

pipelines for data analysis is provided. Blood samples, though considered minimally
invasive, remain critical in this direction. They enable comprehensive profiling of intracel-
lular and peripheral biomarkers, providing invaluable information for disease monitoring
and early diagnosis [13,14]. Clinical samples like urine, saliva, and sweat are vital for
non-invasive assessments, revealing biochemical and hormonal changes. Wearable devices
that monitor metrics like the heart rate, respiratory rate, and physical activity, alongside
clinical and demographic data, offer a continuous, personalized assessment of physiological
states. Collectively, these methodologies highlight the multifaceted nature of non-invasive
biomarker discovery, indicating molecular insights with physiological and systemic alter-
ations for a holistic understanding of health. Recent studies on innovative approaches,
including breathomics and gut microbiome profiling, have further expanded the diagnostic
possibilities [15–18]. Breathomics analyzes the volatile organic compounds in exhaled
breath and shows promise in detecting respiratory diseases and other systemic conditions.
Meanwhile, gut microbiome profiling examines the microbial diversity and composition in
stool samples, relating it to a range of disorders, ranging from gastrointestinal to neuropsy-
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chiatric conditions. These breakthroughs have brought new perspectives to diagnostics,
targeting previously underexplored aspects of human health.

Non-invasive biomarkers facilitate more frequent and convenient testing, essential for
managing chronic conditions and conducting population health screenings. The reduced
procedural risks enhance patient safety and compliance, particularly for vulnerable groups
such as children, the elderly, and individuals with multiple health issues [19–21]. Moreover,
the lower cost and infrastructure demands of non-invasive diagnostics make them an
appealing option for large-scale healthcare applications, especially in resource-limited
settings. By enabling earlier detection and intervention, non-invasive approaches have the
potential to improve clinical outcomes while reducing long-term healthcare expenditures.
Nevertheless, despite their promise, non-invasive biomarkers currently face challenges in
achieving diagnostic sensitivity and specificity comparable to invasive techniques, limiting
their integration into routine clinical practice. Tackling this gap is crucial to fully harnessing
their potential in precision medicine.

Recent advances in computational technologies are driving significant progress in
clinics from a non-invasive perspective. The integration of artificial intelligence (AI), ma-
chine learning (ML), and high-throughput data analysis has enabled researchers to uncover
complex patterns and predictive markers within large, multi-modal datasets spanning ge-
nomics, proteomics, metabolomics, and medical imaging [22–24]. These tools enhance the
diagnostic accuracy of non-invasive biomarkers and facilitate the stratification of patients
into clinically relevant subgroups, paving the way for personalized therapeutic strategies.
Such progress is especially valuable for complex, multifactorial diseases like cancer, cardio-
vascular disorders, and neurodegenerative conditions, where early and accurate diagnosis
is crucial. While computational advances have bolstered the potential of non-invasive
biomarkers, computational challenges still remain. Translating AI-enhanced biomarker
discoveries into clinical practice requires rigorous validation, standardized methodologies,
and strong regulatory frameworks to ensure reliability and reproducibility [25]. Addition-
ally, the limited access to advanced computational resources and diverse datasets poses
a risk of further exacerbating disparities in healthcare [25–28]. In light of this, Figure 1
presents different types of non-invasive biomarkers and the principal stages of computa-
tional analysis. In more detail, the upper part of the figure highlights commonly utilized
non-invasive techniques for biomarker identification across a broad spectrum of diseases
and conditions, while the lower one delineates the sequential steps typically followed
during computational analyses.
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Figure 1. Framework for the identification of various types of non-invasive biomarkers, showcasing 
data integration derived from imaging analyses, signal processing, digital records and molecular 
techniques (upper). A graphical illustration of the key steps typically undertaken during computa-
tional-based analyses of these data (lower). The workflow encompasses data acquisition, prepro-
cessing, and computational analysis, followed by biomarker identification and interpretation. Ex-
perimental validation is conducted to confirm the reliability of the detected markers, reflecting the 
iterative nature of translating multi-source data into clinically insightful knowledge. 
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Numerous studies have explored the role of non-invasive biomarkers in specific dis-

eases. The aim of the present study is intentionally broad, encompassing a range of con-
ditions and diseases instead of focusing on a single pathology. By adopting this general-
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that span diverse applications, offering a holistic perspective on the landscape of the non-
invasive biomarker field. The selected time frame for the current review encompasses 
studies published between 2019 and 2024, reflecting the latest advancements and emer-
gent trends in this rapidly evolving field. Table 1 outlines the prevalent data types and 
formats employed in relevant studies, offering insight into the modalities in which bi-
omarker information is captured. The methods are categorized according to the data types 
detailed in Table 1, resulting in four primary subdivisions: imaging-based, molecular-
based, signal-based, and clinical-based studies. 

  

Figure 1. Framework for the identification of various types of non-invasive biomarkers, showcasing
data integration derived from imaging analyses, signal processing, digital records and molecular tech-
niques (upper). A graphical illustration of the key steps typically undertaken during computational-
based analyses of these data (lower). The workflow encompasses data acquisition, preprocessing,
and computational analysis, followed by biomarker identification and interpretation. Experimental
validation is conducted to confirm the reliability of the detected markers, reflecting the iterative
nature of translating multi-source data into clinically insightful knowledge.

3. Recent Advances in Non-Invasive Biomarker Identification
Numerous studies have explored the role of non-invasive biomarkers in specific

diseases. The aim of the present study is intentionally broad, encompassing a range of
conditions and diseases instead of focusing on a single pathology. By adopting this general-
ized approach, this work focuses on the identification and assessment of methodologies
that span diverse applications, offering a holistic perspective on the landscape of the non-
invasive biomarker field. The selected time frame for the current review encompasses
studies published between 2019 and 2024, reflecting the latest advancements and emergent
trends in this rapidly evolving field. Table 1 outlines the prevalent data types and formats
employed in relevant studies, offering insight into the modalities in which biomarker
information is captured. The methods are categorized according to the data types de-
tailed in Table 1, resulting in four primary subdivisions: imaging-based, molecular-based,
signal-based, and clinical-based studies.
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Table 1. Prevalent data modalities for the identification of various types of non-invasive biomarkers.
The present recording was conducted between 2019 and 2024.

Data Type Modality Description Reference(s)

Imaging

Ultrasound

Deep learning and computational models, including
segmentation-based bi-attention DoubleUNet, compression
ultrasound interpretation networks, 0D cardiovascular
simulations, and AlexNet-based classifiers, were employed to
enhance the non-invasive diagnosis of vascular, hepatic, and
pancreatic conditions.

[29–32]

Dermoscopy

Multi-layer machine learning (decision trees, random forests,
SVM, KNN) and deep learning ensembles (MobileNet,
Xception, ResNet50, DenseNet121) for melanoma diagnosis
using dermoscopic images.

[23,33]

RGB

Support vector machine (SVM), K-nearest neighbor (KNN),
decision tree, and discriminant analysis models applied to RGB
and thermal imaging data for non-invasive pneumonia
diagnosis and therapeutic monitoring.

[34]

CT scan

Deep learning and machine learning models, including ResNet
V2 with a multi-task autoencoder for CNS tumor diagnosis and
radiomics-based random forest and gradient boosting machines
for colorectal cancer prognosis, were applied to analyze CT scan
images non-invasively.

[35,36]

MRI

Various machine learning models were applied to MRI images,
including ResNet V2 and a multi-task autoencoder for CNS
tumor diagnosis, a multi-layer perceptron for Menière’s disease
classification, deep learning radiomics with liquid biopsy for
glioma diagnosis, CNNs for non-invasive disease detection,
integrative biophysical modeling for breast cancer
immunotherapy profiling, a non-local ResNet and MMoE for
NAFLD assessment, SVM and logistic regression for uterine
leiomyoma subtyping, and radiomics-based LDA and SVM for
meningioma grading.

[31,37–42]

Molecular

Blood

Multi-task deep learning, deep and shallow neural networks,
ResNet-18, and ensemble machine learning models were used
for glioma diagnosis, colorectal cancer detection, bladder cancer
classification, and coronary artery disease risk stratification
using blood-based biomarkers.

[41,43–45]

ctDNA/RNA/microRNA

Latent Dirichlet allocation (LDA) was used for microRNA
biomarker discovery in prostate cancer, while computational
frameworks integrating circulating microRNAs, cell-free DNAs,
and proteins employed machine learning models for enhanced
disease detection and monitoring.

[6,7,26]

Microarrays/RNA-seq

Machine learning models, including SVM for colorectal cancer
biomarker identification, CNN for NAFLD classification,
bioinformatics-driven PPI network analysis for pancreatic
cancer biomarkers, and differential expression analysis with
machine learning for plasma mRNA-based prostate cancer
detection, were applied to microarray and RNA-seq data.

[30,46–49]

Urine

Deep and shallow neural networks for colorectal cancer
diagnosis, ResNet-18 for bladder cancer classification using
urine droplet patterns, hierarchical cluster analysis for
glycosuria and diabetes biomarker identification, and a 34-layer
residual network for non-invasive glomerular disease diagnosis
using hyperspectral urine analysis were applied to
urine-based data.

[43,44,50,51]

Plasma

Random forest, gradient boosting, CART, and SVM were used
for Alzheimer’s disease prediction based on plasma biomarkers,
while bioinformatics-driven differential gene expression
analysis and statistical machine learning identified novel
plasma mRNA biomarkers for prostate cancer diagnosis.

[48,52]



Sensors 2025, 25, 1396 6 of 31

Table 1. Cont.

Data Type Modality Description Reference(s)

Signal

Spectroscopy

PCA-SVM was used for serum feature extraction and disease
classification, while a customized ANN and PCA-SVM were
applied for non-invasive type 2 diabetes mellitus diagnosis
using spectroscopy-based data.

[53,54]

ECG

Deep learning and machine learning models, including IGRNet
(CNN) for prediabetes diagnosis, random forest with PCA for
hyperkalemia classification, hierarchical extreme learning
machine (H-ELM) for fetal arrhythmia detection, and a CNN
for HbA1c-based diabetes prediction, were applied to
ECG-based data.

[55–58]

Acoustic

KNN, SVM, and random forest were used for arteriovenous
fistula classification with phono-angiography signals, while
logistic regression, SVM, and random forest were applied for
cognitive impairment diagnosis using cross-lingual
speech features.

[59,60]

Clinical Patient Record

Random forest, gradient boosting, CART, and SVM were used
for Alzheimer’s disease prediction based on cognitive scores
and genetic risk factors, ANN, random forest, XGBoost,
AdaBoost, decision tree, naïve Bayes, logistic regression, and
SGD for congenital heart disease diagnosis using electronic
health records, a random forest model with NLP for dementia
diagnosis using qualitative cognitive assessments, and
multi-layer perceptron, random forest, and logistic regression
for liver fibrosis staging using clinical parameters.

[24,52,61–63]

3.1. Imaging-Data-Based Studies

Keinz et al. [29] demonstrated how imaging data can enable non-invasive biomarker
identification for diagnosing deep vein thrombosis (DVT). Using compression ultrasound
imaging from 255 volunteers and validating it on 83 patients, their study focused solely
on imaging, avoiding genomic techniques. They developed AutoDVT, a CNN-based
segmentation model to assess vein compressibility, enabling non-specialists to diagnose
DVT at the point of care. Separate models were used for different anatomical regions,
incorporating real-time feedback for image acquisition. The system achieved sensitivity
between 82 and 96% and specificity from 70 to 82%, showing strong diagnostic potential.
Despite the promising results, the limitations included a small sample size and the need for
larger multi-center trials.

Ottakath et al. [30] explored non-invasive biomarker identification for carotid artery
stenosis using automated ultrasound image segmentation. Analyzing 971 B-mode ultra-
sound images from Toshiba (Tokyo, Japan) and Ultrasonix (Birmingham, UK) devices,
the study leveraged the bi-attention DoubleUNet architecture, integrating channel-wise
and spatial attention. Images were resized to 224 × 224 pixels and split into training,
validation, and test sets. The model achieved state-of-the-art performance, with a 97.92%
Dice coefficient, 95.96% IoU, 98.35% precision, and 97.57% recall, surpassing traditional
segmentation methods. Guided back-propagation and attention maps enhanced the inter-
pretability. While the results demonstrate high accuracy, future work aims to improve the
dataset quality and the expand clinical applicability.

Furthermore, Villanueva et al. [31] developed a non-invasive method for assessing
portal hypertension using Doppler ultrasound-derived hepatic blood flow waveforms
and computational modeling. Data from the hepatic vein (HV), portal vein (PV), and
hepatic artery (HA) were collected from two patients—one with a normal and one with an
elevated hepatic venous pressure gradient (HVPG). A 0D computational cardiovascular
model simulated the blood flow and pressure distributions, with CMA-ES optimizing
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the patient-specific parameters. The model accurately reproduced the normal and altered
hepatic waveforms, closely matching the invasive measurements. Sensitivity analysis
highlighted liver compliance and vascular resistance as key determinants of the HVPG,
demonstrating the model’s potential for non-invasive portal pressure estimation.

Moreover, Sun et al. [32] developed a non-invasive method for diagnosing pancreatic
steatosis (PS) using ultrasound imaging and deep learning. Analyzing grayscale ultrasound
images from 139 patients, the study employed an AlexNet CNN fine-tuned on ImageNet
for PS classification. Data augmentation improved the model robustness, and images were
resized to 512 × 512 pixels for training. The model outperformed traditional radiological
assessments, achieving an AUC of 0.901, 89.5% sensitivity, and 81.4% accuracy in training,
with validation results of AUC 0.837, 92.0% sensitivity, and 85.7% accuracy. Sun et al.
advocated for its use in early screening and T2DM risk assessment, although further
validation is needed.

Furthermore, Keskenler et al. [23] developed a non-invasive skin cancer diagnosis
method using dermoscopic image analysis from the HAM10000 dataset (10,015 high-
resolution images of eight skin lesion types). Biomarkers were extracted from the luminance,
RGB values, and texture patterns, combined with clinical data (age, gender, lesion location).
A multi-layer machine learning (MLML) architecture processed the images in three stages:
(1) initial classification using decision tree, random forest, neural network, naïve Bayes,
and SVM, (2) refinement with K-nearest neighbor (KNN), and (3) accuracy enhancement
via linear regression. The model achieved 88.81% accuracy, 88.89% precision, 99.17% recall,
and a 93.75% F1-score, demonstrating its potential for non-invasive skin cancer diagnosis.

In a similar vein, Alfi et al. [33] developed a non-invasive diagnostic approach for
melanoma, integrating deep learning (DL) with ensemble stacking of machine learning
(ML) models to improve lesion classification. Using 3297 dermoscopic images from the
ISIC 2018 dataset, the study applied preprocessing techniques like normalization and
augmentation. A hybrid method combined classical ML models (SVM, random forest,
logistic regression, KNN, gradient boosting) with pre-trained CNNs (MobileNet, Xception,
ResNet50, ResNet50V2, DenseNet121) via transfer learning. The best-performing ensemble
model achieved 92% accuracy and an AUC of 0.97. SHAP heatmaps were used to enhance
the interpretability, highlighting key features indicative of melanoma.

Moreover, Qu et al. [34] explored non-invasive thermal imaging biomarkers for di-
agnosing and monitoring pneumonia, including COVID-19 cases. By analyzing the back
temperature patterns, the study identified correlations with respiratory conditions, pro-
viding a practical tool for early diagnosis. Data from 69 subjects, including pneumonia
patients and healthy controls, were collected using a smartphone-connected thermal imager.
A computational pipeline involving preprocessing, feature extraction, and classification
was implemented, with PCA reducing the dimensionality. Among the tested ML models
(SVM, KNN, decision trees, LDA, QDA), SVM achieved the highest accuracy—93% for
binary classification and 81% for ternary classification. The system effectively tracked
disease progression, although further validation with larger cohorts is needed before
clinical adoption.

In addition, Maddali et al. [64] investigated non-invasive biomarker identification for
idiopathic pulmonary fibrosis (IPF) using deep learning on CT scans. By analyzing the
radiologic patterns with a 3D ResNet-based CNN ensemble, the study aimed to replace
invasive lung biopsies. Data from over 2000 patients with interstitial lung disease (ILD)
were processed using augmentation techniques and hyperparameter tuning to enhance
the model robustness. The model achieved an AUC of 0.87, with 67% sensitivity and 90%
specificity, outperforming clinician assessments. External validation confirmed its consis-
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tency across CT scanners. While promising, the study’s retrospective design necessitates
further prospective validation before clinical adoption.

In the same vein, Ye et al. [65] identified non-invasive imaging biomarkers from
multimodal CT scans to predict the pathological complete response (pCR) in non-small-cell
lung cancer (NSCLC) patients undergoing neoadjuvant immunochemotherapy. Analyzing
CT scans from 225 patients, the study used deep learning to extract imaging features,
integrating non-contrast and contrast-enhanced modalities. A foundation model (FM-LCT)
trained on lung cancer datasets was employed, with PCA reducing the dimensionality
before classification using random forest models. The fused-feature model, LUNAI-fCT,
achieved the highest performance (AUC 0.866, 80% accuracy, 91.7% sensitivity, 73.9%
specificity). SHAP and Grad-CAM analyses highlighted key tumor regions influencing
the predictions. While the model shows potential for personalized cancer care, larger-scale
validation is needed to confirm its clinical applicability.

Likewise, Tamehisa et al. [37] developed a non-invasive method for classifying uterine
leiomyoma subtypes using MRI-derived quantitative imaging biomarkers to detect MED12
mutations. A computational pipeline extracted signal intensities reflecting collagen and
water content, identifying key differences between the subtypes. Support vector classifi-
cation (SVC) and logistic regression (LR) models were trained and validated using k-fold
cross-validation and external datasets. The models demonstrated exceptional performance,
with AUC values of 0.974 (SVC) and 0.988 (LR) internally, and perfect AUC and accuracy
(1.0) in external validation, highlighting their potential for genetic characterization without
invasive procedures.

Van der Kolk et al. [38] investigated radiomics-based features from conventional MRI
as non-invasive biomarkers for diagnosing Menière’s disease. Using T2-weighted MRI
scans from 120 patients and 140 controls across four medical centers, the study applied
machine learning to distinguish between groups. A computational pipeline included
manual labyrinth segmentation, voxel normalization, and radiomic feature extraction,
reducing 812 features to 15 via PCA. A multi-layer perceptron (MLP) classifier achieved 82%
accuracy, 83% sensitivity, 82% specificity, and an AUC of 87%. The model showed strong
diagnostic potential but required further validation on larger datasets and automation of
the segmentation to enhance the scalability.

Additionally, Rehman et al. [22] developed a non-invasive diagnostic framework
for obstructive lung diseases (OLDs) by combining iris imaging and physiological fea-
tures. The data from 529 subjects included infrared-captured iris images and physiological
measurements such as the BMI and blood pressure. A multi-step pipeline involved iris
image preprocessing using localization, segmentation, and Dougman’s rubber sheet model,
followed by feature extraction with GLCM and GLRL, resulting in 112 features. Feature
selection through t-tests and PCA identified key biomarkers. Among the ten machine
learning models tested, ensemble learning achieved the highest accuracy (97.6%), followed
by SVM (95.6%). The study demonstrated that integrating iris and physiological features
improved the diagnostic accuracy compared to individual feature analysis.

Similarly, Wulandari et al. [66] developed a non-invasive anemia detection method
using conjunctival imaging, eliminating the need for blood sampling. The “Eyes-defy-
anemia” dataset provided segmented conjunctival images for deep learning analysis. A
computational pipeline included preprocessing, augmentation, and class balancing with
SMOTE and Tomek Links. MobileNetV2 was used for feature extraction, with three classi-
fication approaches tested: SVM, MobileNetV2, and a hybrid MobileNetV2-SVM model.
The hybrid model achieved the best performance, with 93% accuracy, 91% sensitivity, and
94% specificity, demonstrating the potential of ocular imaging for anemia diagnosis.
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Furthermore, Abdeltawabet et al. [39] developed AI-driven non-invasive diagnostic
models across multiple medical imaging modalities. Using diffusion-weighted MRI (DWI),
cine MRI, and histopathological images, the study applied deep learning to detect renal
transplant rejection, analyze cardiac function, and classify kidney cancer. The customized
computational pipelines included CNNs for DWI-based rejection detection, FCNs for
cardiac MRI segmentation, and pyramidal deep learning frameworks for kidney cancer
classification. Preprocessing steps, such as histogram equalization and segmentation,
improved the image quality. The renal rejection model achieved 92% accuracy, the cardiac
analysis aligned with expert evaluations, and the pyramidal framework outperformed
state-of-the-art kidney cancer classifiers. The study underscores deep learning’s potential
for broad clinical adoption in non-invasive diagnostics.

In a similar light, Prince et al. [35] developed an explainable AI (XAI) model for
non-invasive CNS tumor diagnosis, reducing reliance on biopsies. MRI and CT scans
from 50 patients (46,879 2D DICOM images) were preprocessed and resized for deep
learning analysis. A ResNet V2-50 model, pretrained on ImageNet, extracted the vector
embeddings, which were mapped into a 256-dimensional latent space using an autoencoder
and clustered via Gaussian mixture models. The study emphasized user-centered design
(UCD), integrating clinician feedback through an iterative process with SHAP saliency
maps and Google’s What-If Tool (WIT) to enhance the interpretability. While the final
accuracy metrics were not disclosed, the XAI prototype showed strong potential for real-
world clinical application in non-invasive CNS tumor diagnosis.

Similarly, Sathyaseelan et al. [67] developed a non-invasive method for detecting strep
throat infections using smartphone-captured throat images, replacing traditional swab tests.
A smartphone camera with an add-on device enhanced the image quality, ensuring clear
visualization. The study employed a multi-task cascaded convolutional neural network
(MTCNN) to detect and isolate the throat region, extracting the color, texture, and structural
patterns indicative of infection. A binary classification model combining neural networks
and decision trees distinguished between infected and healthy cases. The model achieved
95% accuracy, 96% sensitivity, 92% specificity, and an AUC-ROC of 0.97, demonstrating the
potential of smartphone-based diagnostics for clinical and remote healthcare applications.

Moreover, Adjei et al. [36] explored non-invasive biomarker identification for col-
orectal cancer (CRC) using radiomic features from CT scans to complement or replace
traditional tumor–stroma ratio (TSR) measurements. The data from the Cancer Genomic
Atlas (TCGA) included 459 pathology slides and 451 corresponding CT scans. The radiomic
feature extraction followed the IBSI guidelines, while a vision transformer (ViT) model
segmented the tumor and stroma areas on the histopathology slides to calculate the TSR.
The Spearman’s and Pearson’s correlations identified associations between the radiomic
features and the TSR, with random forest (RF) and gradient boosting machine (GBM)
ranking the feature importance. Key radiomic features, such as GLSZM_LALGLE, showed
strong correlations with the TSR, demonstrating radiomics’ potential as a non-invasive
alternative for CRC diagnosis. Figure 2 summarizes the above studies.

Similarly, Pillai et al. [46] developed a non-invasive method for diagnosing non-
alcoholic fatty liver disease (NAFLD) using abdominal MRI-derived metrics from the UK
Biobank. Key biomarkers, including the proton density fat fraction (PDFF), visceral adipose
tissue (VAT), and abdominal subcutaneous adipose tissue (ASAT), were extracted from
multi-echo spoiled-gradient-echo MRI scans. A 3D ResNet-based CNN classified NAFLD
using the PDFF, while a 2D U-Net segmented the liver for focused analysis. Multi-task
learning (MMoE) predicted the PDFF, VAT, and ASAT, achieving up to a 0.95 Spearman’s
correlation. The non-local ResNet performed best, with 0.88 precision and a 0.89 F1-score,
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supporting whole-abdomen MRI as a superior approach to liver-only segmentation for
NAFLD assessment.
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Last but not least, Chen et al. [40] used radiomics features from post-contrast T1-
weighted MRI (T1C) scans to classify meningioma grades, reducing the need for invasive
biopsies. MRI data from 150 patients were analyzed, with radiomics features extracted
using LIFEx software to assess the tumor aggressiveness. Feature selection involved
distance correlation, LASSO, and gradient boosting decision trees (GBDTs), refining the
dataset for classification. Machine learning models, including LDA and SVM, were tested,
with LDA + LASSO achieving the highest accuracy (75.6%) and a Kappa value of 0.603,
outperforming the SVM models. The study reinforces radiomics as a valuable tool for
non-invasive tumor grading, although further validation is needed for clinical adoption.

3.2. Molecular-Data-Based Studies

Lorenzovici et al. [43] developed a non-invasive computer-aided diagnostic (CAD)
system for colorectal cancer (CRC) diagnosis using blood and urine biomarkers. A dataset of
33 clinical biomarkers, including albumin, bilirubin, and creatinine, was analyzed alongside
qualitative factors like the tumor position and living environment. A machine learning
pipeline in MATLAB (MATLAB, 2020, The MathWorks Inc.: Natick, MS, USA) applied
binary classification models and artificial neural networks (ANNs) for regression tasks. The
deep neural network achieved the most precise predictions, with the linear discriminant
analysis reaching 77.8% accuracy and the regression models yielding a mean squared error
of 0.0000529. The study highlights the potential of combining fluid biomarkers with AI
to improve CRC diagnostics through non-invasive early detection. Table 2 provides an
overview of conditions frequently analyzed, revealing the wide range of applications in
this field.
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Table 2. Disease categories and conditions identified in the current work, reflecting both common
and emerging trends.

Disease Class Condition Reference(s)

Cancer

Colorectal [36,43,49]
Skin [23,33]

NSCLC [65]
Pancreatic [24,47]

Bladder [44]
Prostate [48]
Glioma [41]
Breast [42]

Uterine Fibroid [37]

Cardiovascular

Deep Vein Thrombosis [29]
Peripheral Artery Disease [68]
Coronary Heart Disease [61,69,70]

Arrhythmia [57]

Neurodegenerative
Alzheimer’s Disease [52,60]
Parkinson’s Disease [71]

Dementia [52,62]

Respiratory
Pneumonia [34]

Idiopathic Pulmonary Fibrosis [64]
COVID-19 [34,72]

Metabolic
Diabetic Nephropathy [51,53]

Diabetes Mellitus [32,50,54,58]

Autoimmune Sjogren’s Syndrome [53]

Liver
Portal Fibrosis [63]

Septa [63]
Cirrhosis [31,63,73]

Moreover, Javanshir et al. [47] identified biomarkers distinguishing non-invasive and
invasive pancreatic cancer, emphasizing early detection for improved prognosis. Using
microarray datasets (GSE62165, GSE19281) from the GEO database, the study performed
differential expression analysis (GEO2R) and intersected DEGs via Venn diagrams. Func-
tional annotation was conducted through KEGG and Gene Ontology (GO) analyses, while
PPI networks (STRING, Cytoscape) identified hub genes. Validation using TCGA data
confirmed eight key proteins (SPARC, THBS2, COL11A1, COL1A1, COL1A2, COL3A1,
SERPINH1, PLAU) linked to cell adhesion and ECM regulation, with high expression cor-
relating with increased mortality, highlighting their role in pancreatic cancer progression.

In a similar vein, Demir et al. [44] developed an AI-driven non-invasive diagnostic
method for bladder cancer by analyzing the droplet patterns from blood and urine samples.
Using light microscopy and a ResNet-18 convolutional neural network (CNN), the study
extracted the morphological features of dried droplets to classify samples as “bladder
cancer” or “non-cancerous”. Transfer learning refined the model, which was validated
through five-fold cross-validation. The AI-assisted method achieved 97.3% accuracy, 97.7%
sensitivity, and 97.2% specificity for blood samples, while urine samples analyzed with
KCl solution reached 95.3% accuracy, 98.7% sensitivity, and 82.9% specificity. The study
highlights AI’s potential in transforming non-invasive cancer diagnostics.

Additionally, Sajid et al. [45] developed a non-invasive method for coronary artery
disease (CAD) diagnosis and risk stratification using clinical, chemical, and molecular
biomarkers combined with machine learning (ML). Data from 36 pre-angiography biomark-
ers, including miRNA33a and miRNA146a, were processed through a multi-stage com-
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putational pipeline with feature selection identifying the top 15 biomarkers. Random
forest, gradient boosting, and extreme gradient boosting models predicted the Gensini
scores, stenosis percentage, and vessel involvement, achieving 86.26% accuracy for the
Gensini group prediction, 90.91% for the CAD severity stratification, and 82.58% for the
vessel involvement. Regression tasks yielded an R-squared value of 0.58 for the stenosis
percentage prediction. The AI-CADR risk stratification framework demonstrated strong
clinical decision-making potential, providing a cost-effective, non-invasive alternative to
coronary angiography.

Moreover, Souradeep et al. [74] developed a non-invasive VOC analysis framework
using resistive sensing technology and machine learning to detect acetone and isoprene in
exhaled breath, aiding disease diagnosis related to lipid metabolism. Data were collected
from an indium-oxide-based sensor, with Gaussian noise augmentation improving the
training robustness. Key features (rise time, decay time, peak width, decay slope) were
selected via extremely randomized trees. Machine learning models (naïve Bayes, decision
trees, logistic regression, KNN, and histogram-based gradient boosting) were trained with
grid search optimization. The system achieved 88% accuracy for binary classification,
75–100% accuracy for multilabel classification, and near-perfect regression performance
(R2 ≈ 1). The sensor detected VOCs at 50 ppb, maintaining stability under humidity and
CO2, highlighting its potential for early, non-invasive diagnostics. Figure 3 summarizes the
above studies.
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Furthermore, Cao et al. [71] explored the use of volatile organic compounds (VOCs)
in skin sebum as non-invasive biomarkers for Parkinson’s disease (PD). By employing an
artificial intelligence olfactory (AIO) system that integrates gas chromatography (GC) with
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a surface acoustic wave (SAW) sensor, the study highlights a novel, cost-effective approach
for diagnosing PD. This methodology underscores the potential of combining chemical
analysis with artificial intelligence to transform clinical diagnostics while acknowledging
the need for further research to refine disease progression stratification. Skin sebum samples
were collected from 121 PD patients and 129 healthy controls to serve as the primary dataset.
The computational pipeline included preprocessing the sebum samples to extract the VOCs,
followed by data collection through the AIO system. Machine learning models, including
gradient boosting decision tree (GBDT), random forest (RF), and extreme gradient boosting
(XGB), were applied to classify PD patients and healthy controls. Validation of these
models involved metrics such as the sensitivity, specificity, and area under the curve (AUC),
ensuring robust assessment of the diagnostic performance. The results showed that the
GBDT model outperformed the others, achieving a sensitivity of 83.33%, specificity of
84.00%, and an AUC of 0.893. Despite its success in identifying PD cases, the study faced
challenges in predicting disease severity based on the Hoehn–Yahr scores.

Similarly, Choudhury et al. [75] investigated non-invasive biomarker identification,
focusing on the potential of salivary biomarkers like S100A8 (calgranulin A) for diagnosing
rheumatoid arthritis (RA). By integrating computational tools with proteomics, the study
highlights a patient-friendly diagnostic approach, aiming to minimize invasive procedures
while advancing autoimmune disease management. The computational pipeline included
DEP identification using SWATH-MS for saliva samples from RA patients and healthy
controls. Microarray datasets (GSE93272 for blood and GSE1919 for synovial tissue) were
analyzed for differentially expressed genes (DEGs), with comparative analyses pinpointing
S100A8 as a shared biomarker. Protein–protein interactions involving S100A8 were ex-
plored using STRING, while molecular docking with PyRx and the FT site server identified
active sites and plant-based inhibitors with therapeutic potential.

Additionally, Wang et al. [48] investigated circulating plasma mRNAs as non-invasive
biomarkers for prostate cancer (PCa) diagnosis. Highlighting key mRNAs such as PCA3,
DLX1, DUOX1, and GSTP1, the study integrates bioinformatics and molecular techniques
to identify plasma-based biomarkers, presenting a promising alternative to invasive diag-
nostic methods. These findings emphasize the potential of mRNA biomarkers in enhancing
early detection and warrant further exploration in larger-scale studies. The initial biomarker
discovery relied on microarray data from the Oncomine database, comparing gene expres-
sion in PCa tissues to adjacent normal tissues. The computational pipeline began with
retrieving and analyzing gene expression data from the Oncomine database. Differen-
tially expressed genes (DEGs) were identified using stringent p-value and fold-change
criteria. Plasma mRNAs corresponding to these DEGs were extracted and quantified via
qRT-PCR, followed by statistical analyses, including Mann–Whitney U tests and receiver
operating characteristic (ROC) curve evaluations, to assess the biomarker performance.
The analysis demonstrated that PCA3 and DLX1 were significantly overexpressed, while
DUOX1 and GSTP1 were underexpressed in plasma samples from PCa patients compared
to healthy controls. Diagnostic accuracy assessments indicated that DLX1 had the highest
performance (AUC 0.821), followed by PCA3 (AUC 0.762), DUOX1 (AUC 0.7072), and
GSTP1 (AUC 0.643). These outcomes highlight the strong potential of plasma-based mRNA
biomarkers for early detection of PCa, offering a non-invasive diagnostic approach that can
enhance clinical workflows.

Vasudevan et al. [24] introduced a novel framework for early cancer prediction, com-
bining urinary biomarkers with machine learning models to identify pancreatic cancer in
its early stages. Clinical data formed the backbone of the study, with the dataset incorpo-
rating features such as the age, sex, creatinine levels, and specific biomarkers, including
LYVE1, REG1B, REG1A, and TFF1. The computational pipeline relied on gradient boosting
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algorithms, particularly XG-Boost and LightGBM, for predictive modeling. Preprocessing
included data cleaning and feature selection to optimize model performance. The Light-
GBM model was noted for its computational efficiency and strong prediction accuracy.
Cross-validation ensured robustness, while performance metrics such as the accuracy, recall,
precision, and F1-score provided a comprehensive evaluation of the model efficacy. Among
the models tested, XGBoost achieved the highest accuracy of 90.36%, while LightGBM
demonstrated superior recall (88.32%) and precision (88.24%), showcasing its reliability in
identifying pancreatic cancer cases. Biomarkers such as TFF1 and LYVE1 exhibited strong
associations with cancer stages, underscoring their diagnostic relevance.

Furthermore, Charuet et al. [76] explored non-invasive biomarker identification for
diagnosing significant liver fibrosis. By leveraging clinical, demographic, and laboratory
data, the study emphasizes the potential of ensemble machine learning techniques, partic-
ularly the superlearner algorithm, to replace invasive procedures like liver biopsy. Data
for the study were derived from three major cohorts: the NASH-CRN observational study,
the FLINT trial, and the NHANES survey. The datasets included variables such as liver
stiffness measurements obtained via transient elastography for the NHANES cohort, along-
side clinical and demographic parameters. These datasets reflect a diverse population,
providing a robust foundation for developing and validating the model. The computational
approach employed the superlearner algorithm, which integrates predictions from 12 base
models, including random forests, support vector machines, generalized linear models,
and neural networks. Cross-validation ensured optimal weighting of the base models to
maximize performance. The algorithm was trained and validated across the three datasets,
with the AUC-ROC serving as the primary metric for assessing its predictive accuracy. The
superlearner exhibited strong diagnostic capabilities, achieving AUCs of 0.79 in the FLINT
cohort and 0.74 in the NHANES cohort for predicting stage 2 or higher liver fibrosis. It
surpassed many existing fibrosis prediction tools, including FIB-4, APRI, and BARD, and
performed comparably to the SAFE score in specific cases.

The identification of circulating miRNAs as non-invasive biomarkers for colorectal
cancer (CRC) has also been examined [49]. By leveraging bioinformatics methodologies
and publicly available datasets, the study highlights the stability of these miRNAs in serum,
positioning them as promising candidates for cost-effective and non-invasive diagnostic
tools. This comprehensive approach underscores the potential of circulating miRNAs to
transform early detection strategies for CRC. The study utilized serum samples analyzed
through microarray technology, with data sourced from the GEO database (GSE59856). The
dataset included 50 CRC patients and 150 healthy controls, providing a robust foundation
for miRNA expression profiling. Orthogonal partial least squares (OPLS) analysis identi-
fied DEMs, while support vector machine (SVM) models were constructed to evaluate the
diagnostic accuracy. Two models were developed: one using all 569 DEMs and another
employing the top three miRNAs with the highest weight coefficients. Additional analyses
included protein–protein interaction (PPI) networks, gene regulatory networks (GRN),
and pathway enrichment to contextualize the findings. The analysis revealed 569 DEMs,
including 316 downregulated and 253 upregulated miRNAs in CRC patients. The SVM
models achieved remarkable classification accuracy, with the primary model demonstrating
an AUC of 1 and the simplified model achieving an AUC of 0.99. The PPI networks identi-
fied 110 hub genes associated with CRC, enriched in over 1000 biological processes and
pathways. Furthermore, transcription factors such as STAT1 and CEBPD were identified as
master regulators, providing deeper insights into CRC’s molecular mechanisms.

Mansouri et al. [77] explored non-invasive biomarkers for diagnosing endometriosis
by examining immune factors, such as cytokines and immune cell markers, in peripheral
blood. Employing machine learning to enhance the diagnostic precision, the study presents
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a compelling alternative to invasive laparoscopy, emphasizing the potential of immune
profiling to transform endometriosis management. Serum samples from 321 patients under-
going diagnostic laparoscopy formed the basis of the study. The immune profiling included
a range of cytokines (e.g., IL-10, IL-17, and IFNg), chemokines like CXCL1, T cell mark-
ers, and natural killer (NK) cell activity. By identifying changes in immune markers, the
study underscores the practicality of using blood-based diagnostics to detect endometriosis,
minimizing the need for invasive procedures. The computational methodology involved
rigorous statistical analysis to identify differentially expressed immune markers, followed
by machine learning modeling to classify patients. Logistic regression was employed,
with the data divided into training and testing cohorts and validated through 3-fold cross-
validation. Fine-tuning ensured optimal predictive accuracy, while independent test cohort
validation demonstrated the model’s generalizability. The study revealed a tolerogenic
immune profile in endometriosis patients, including increased IL-10 production in Tc cells,
reduced IFNg production in NKT cells, decreased Treg cell levels, and diminished NK
cytotoxic activity. Elevated CXCL1 levels, linked to IL-17 activity, further characterized
this profile.

Additionally, Shibin et al. [53] focused on the identification of non-invasive biomark-
ers using surface-enhanced Raman scattering (SERS) technology. By combining serum
biomarker detection with a novel Ag2O–Ag-porous silicon Bragg mirror (PSB) substrate
and machine learning algorithms, the study demonstrates a promising approach for diag-
nosing autoimmune diseases such as Sjögren’s syndrome and diabetic nephropathy. This
innovative framework underscores the potential of integrating advanced spectroscopy
with computational modeling for rapid and cost-effective diagnostics. The study relied on
serum samples obtained from blood, analyzed through SERS spectroscopy to detect disease-
specific biochemical signatures. The computational pipeline incorporated preprocessing
techniques such as baseline correction and smoothing using the airPLS and Savitzky–Golay
algorithms. Principal component analysis (PCA) reduced the dimensionality of the spectral
data, enabling efficient feature extraction. Classification was performed using a support
vector machine (SVM), and the diagnostic performance was assessed through metrics like
the sensitivity, selectivity, accuracy, and AUC. The findings highlight the effectiveness of
the PCA-SVM framework combined with the composite SERS substrate. For Sjögren’s
syndrome, the model achieved an accuracy of 90.7%, with a sensitivity of 93.4% and an
AUC of 0.900. For diabetic nephropathy, the accuracy reached 89.3%, with a sensitivity of
95.6% and an AUC of 0.878.

Furthermore, Rehan et al. [50] investigated the non-invasive identification of biomark-
ers for diabetes mellitus, focusing on the urinary glucose and tryptophan levels. Utilizing
fluorescence spectroscopy and hierarchical cluster analysis (HCA), the study explored
the diagnostic potential of these biomarkers, offering a novel approach to diabetes detec-
tion without invasive procedures. This work highlights the integration of spectroscopic
techniques and unsupervised machine learning to improve biomarker-based diagnostics.
The study analyzed urine samples from 40 participants, split evenly between diabetic and
non-diabetic controls.

Lastly, a study [73] investigated the volatile organic compounds (VOCs) in exhaled
breath as non-invasive biomarkers for liver disease diagnosis, particularly cirrhosis. Using
thermal desorption–gas chromatography–field asymmetric ion mobility spectrometry (TD-
GC-FAIMS), breath samples from 50 participants were analyzed with machine learning
models. Feature extraction identified the molecular signatures, with logistic regression
computing a molecular feature score. Random under-sampling boosted trees (RUSBTs)
and Gaussian naïve Bayes (GNB) were used for classification. The molecular feature score
achieved 90% sensitivity and 57% specificity, while the RUSBT improved the specificity to
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75%, with 88% sensitivity. Tandem models reached 89% accuracy for cirrhosis detection
and 84% for decompensated disease classification, highlighting VOCs’ potential for liver
disease diagnostics.

3.3. Signal-Data-Based Studies

To begin with the signal-data-based studies, Wang et al. [55] explored the potential
of non-invasive biomarker identification through electrocardiographic features, aiming
to detect prediabetes. The dataset comprised 12-lead ECG recordings, each lasting 5 s,
collected from 2251 training cases and 663 independent testing cases. These recordings
were processed into 2D image formats for analysis using deep learning techniques. To
address the class imbalances and improve the model generalizability, data augmentation
methods such as cropping and resizing were applied, effectively expanding the dataset.
The IGRNet model delivered strong diagnostic performance, achieving an accuracy of
85.4%, sensitivity of 86.2%, and specificity of 86.5% on mixed test datasets. Additionally,
the model excelled in BMI-specific datasets, particularly among individuals with a BMI
below 25, where the validation accuracy increased significantly.

Additionally, Torshizi et al. [56] developed a non-invasive method for detecting hyper-
kalemia using ECG-derived features, eliminating the need for blood sampling. ECG data
from 126 hyperkalemic patients and 152 controls were collected using a 12-lead Philips ECG
device, with the analysis focused on lead 2. A computational pipeline extracted 16 critical
ECG features, with principal component analysis (PCA) reducing the dimensionality. Ma-
chine learning models, including random forest (RF), decision tree (DT), SVM, and logistic
regression (LR), were tested, with RF achieving the best performance (74% accuracy, 83%
precision, 54% recall, AUC 0.69). While promising, further validation on larger populations
is needed to enhance the diagnostic accuracy and generalizability.

Moreover, the potential of EEG signals as non-invasive biomarkers for diagnosing
pediatric tic disorders (TD) was explored [78]. This approach emphasizes improving the
diagnostic accuracy and objectivity, moving beyond traditional clinical methods through
advanced computational analysis of brain activity. A one-dimensional convolutional neural
network (1D-CNN) was implemented for feature extraction, coupled with max pooling
to streamline the dimensionality. Residual neural networks (ResNets) were employed to
extract deep features through residual blocks and bottleneck structures, enhancing the
computational efficiency. The final classification was handled by a multi-layer perceptron
(MLP) using softmax for probabilistic predictions. The performance evaluation involved
four-fold cross-validation and metrics such as precision, recall, F1-score, and AUC. The
ResNet model achieved an accuracy of 87.23%, with a precision of 88.47% and an AUC of
0.96, demonstrating strong diagnostic capability. Notably, the EEG signal regions along the
Fp2-F4-C4 axis were identified as critical to the diagnostic predictions, emphasizing the
importance of the frontal and central brain regions. While the study highlights the promise
of EEG-based diagnostic tools for clinical use, challenges related to signal instability in
extended recordings suggest further refinement is needed for robustness.

In a similar vein, Ma et al. [69] developed a non-invasive method for diagnosing
CHD-associated pulmonary arterial hypertension (CHD-PAH) using heart sound signals
(PCG). A computational pipeline processed the heart sounds, isolating the second heart
sound (S2), a key diagnostic marker. Feature extraction included time-domain (cycle
intensity, intervals), frequency-domain (spectral entropy, dominant frequency), and deep
learning-based PNCC features via a CNN. The features were fused into a single vector and
classified using XGBoost, with majority voting enhancing the accuracy. The model achieved
88.61% accuracy for three-class classification (normal, CHD, CHD-PAH), demonstrating
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the effectiveness of integrating multiple feature extraction techniques for non-invasive
cardiac diagnosis.

Similarly, Liu et al. [57] developed a non-invasive method for diagnosing fetal ar-
rhythmias using non-invasive fetal electrocardiography (NI-FECG) signals. Data from the
NIFEADB database were processed through a computational pipeline, including noise
removal, segmentation, and multi-domain feature extraction (wavelet entropy, sample en-
tropy, and Hilbert–Huang transform). Neighborhood component analysis (NCA) reduced
the features from 120 to 40, optimizing the classification. A hierarchical extreme learning
machine (H-ELM) framework, integrating ELM-SAE for feature extraction and an ELM
classifier, outperformed SVM, random forest, and DBN, achieving 96.33% accuracy, 99.11%
sensitivity, and 93.91% specificity. While the model demonstrated strong performance,
further validation on diverse datasets is needed.

In a similar vein, Duc et al. [54] conducted a non-invasive approach for diagnosing
type 2 diabetes mellitus (T2DM) by combining Raman spectroscopy data with advanced
machine learning models. Data for the study were collected in vivo from 20 participants,
including 11 T2DM patients and nine healthy controls. Raman spectroscopic scans targeted
skin sites such as the cubital vein, earlobe, inner arm, and thumbnail. Preprocessed
spectral data, with fluorescence background subtraction and normalization, formed the
basis of the computational analysis. Dimensionality reduction through principal component
analysis (PCA) retained 99% of the data’s variance, ensuring robust feature representation.
To classify the data, the study utilized support vector machines (SVMs) and artificial
neural networks (ANNs). Hyperparameter tuning optimized both models, with the ANN
incorporating two hidden layers and leveraging activation functions like ReLU, tanh, and
sigmoid. Five-fold cross-validation ensured robust evaluation of the performance metrics,
including the accuracy, sensitivity, specificity, and ROC-AUC scores. Among the models
tested, the ANN outperformed the others, with an accuracy of 93.8% and a ROC-AUC of
0.96, highlighting its superior diagnostic capabilities. Measurements taken from the cubital
vein emerged as the most reliable, offering optimal diagnostic precision.

Similarly, Grochowina et al. [59] introduced a prototype device and machine learning
framework designed for non-invasive monitoring of arteriovenous fistula (AVF) conditions
in hemodialysis patients. By utilizing acoustic signals as biomarkers, this approach targets
vascular access stenosis with enhanced diagnostic precision. The data comprised acoustic
recordings from the AVFs of 38 chronic hemodialysis patients. The acoustic signals were
analyzed using fast Fourier transform (FFT), extracting 23 features from the time-domain
waveforms and frequency spectrums. Feature selection methods such as PCA, forward
search, and feature-class correlation refined the dataset for optimal predictive accuracy. Su-
pervised machine learning algorithms, including K-nearest neighbor (KNN), support vector
machine (SVM), and random forest, were implemented, with KNN yielding the best results.
Leave-one-out cross-validation ensured the robustness and generalizability of the system.
Achieving an 81% classification accuracy across six stages of stenosis progression, the
KNN-based system demonstrated clear potential as a non-invasive and reliable diagnostic
tool for AVF monitoring. Figure 4 shows signal-based non-invasive methodologies.
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In addition, the potential of non-invasive biomarkers derived from 12-lead electrocar-
diograms (ECGs) to predict HbA1c levels and diagnose diabetes mellitus was explored [58].
The research utilized 29,353 unique ECG recordings linked to HbA1c measurements from
5570 adult patients. The ECG signals were processed using a convolutional neural net-
work (CNN) to investigate their utility in distinguishing between diabetes, prediabetes,
and normal glycemic states. Noise reduction techniques, including median filtering and
signal averaging, were applied to refine the ECG data. This dataset, split into training
and validation cohorts in an 80:20 ratio, was used to develop and evaluate the AI model.
Analysis revealed that the ECG features alone provided limited predictive accuracy for the
HbA1c levels. While the AI model classified the diabetes-related categories with moderate
C-statistics of 0.63 (no diabetes), 0.51 (prediabetes), and 0.59 (diabetes), the overall accuracy
and F1 scores hovered around 0.43. These findings suggest that ECG-derived biomarkers, in
isolation, lack sufficient discriminatory power for reliable diabetes screening. Incorporating
additional predictors and expanding dataset diversity are proposed as necessary steps for
improving future AI-driven diagnostic frameworks.

Last but not least, Hu et al. [70] introduced a novel diagnostic framework for coronary
heart disease (CHD). The study developed a light-activated virtual sensor array (LAVSA)
utilizing black phosphorus (BP) and Ti3C2Tx MXene composites to analyze the volatile
organic compounds (VOCs) in exhaled breath, enabling non-invasive biomarker detection.
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Data for this research came from gas signals extracted from breath samples of 45 individuals,
encompassing both healthy participants and CHD patients. The methodology integrated
material science with computational approaches. The LAVSA sensor captured breath
VOCs with high sensitivity, detecting concentrations as low as 50 ppb. Pattern recognition
techniques such as principal component analysis (PCA) and t-distributed stochastic neigh-
borhood embedding (t-SNE) facilitated the initial data classification. Machine learning
algorithms, including logistic regression, K-nearest neighbor (KNN), and support vector
machines (SVM), were then applied to train and validate the predictive models for CHD
diagnosis. The findings highlighted the system’s capacity to classify CHD patients and
differentiate stenosis levels with 69.2% accuracy.

3.4. Clinica-Data-Based Studies

Building on the use of non-invasive clinical data for biomarker identification, Rishika
et al. [61] explored non-invasive methods for detecting congenital heart disease (CHD)
using patient-level data. Data from 36,300 patient records formed the foundation of this
research. The features included the maternal age, family history of birth defects, nutritional
deficiencies, and exposure to risk factors during pregnancy. The structured tabular dataset
provided a robust base for predictive analysis without relying on imaging, molecular tech-
niques, or wearable devices. The computational pipeline encompassed preprocessing steps
to handle missing data, which were imputed using the mode values for each attribute. A
suite of machine learning algorithms, including logistic regression, support vector machine,
random forest, and XGBoost, were tested alongside a deep learning model. The proposed
neural network architecture featured two dense layers with ReLU activation for the hidden
layers and sigmoid activation for binary classification. Performance metrics such as the
accuracy, precision, recall, F1 score, and execution time were used to evaluate the models.
The predictive models showcased impressive performance. Machine learning approaches,
including ANN and XGBoost, consistently achieved an accuracy of 99.79% for CHD de-
tection. The execution times varied, with the ANN requiring the longest time of 1129.8 s,
while Gaussian naïve Bayes completed the task in just 0.024 s.

Moreover, a non-invasive framework for dementia diagnosis using qualitative data
derived from conversational surveys was proposed [62]. The dataset used was sourced
from the Behavioral Risk Factor Surveillance System (BRFSS), a comprehensive health
survey conducted by the CDC. This dataset includes records of demographics, functional
impairments, and subjective cognitive assessments, providing a qualitative foundation
for analysis. The computational pipeline employed a chatbot interface powered by NLP
to facilitate cognitive assessments through surveys. The responses were transformed
into quantitative variables for predictive analysis, and various machine learning models,
including random forest, logistic regression, decision trees, and k-means clustering, were
implemented. The model evaluation relied on metrics like the area under the precision–
recall curve (AUC-PR) and Matthew correlation coefficient (MCC) to ensure robustness.
Among the models tested, the random forest algorithm delivered the most promising
results, achieving an AUC-PR score of 0.83 and an MCC of 0.53. Subjective cognitive
decline emerged as the most significant predictor, followed by functional difficulties and
demographic factors. These findings underscore the potential of leveraging conversational
data for accessible and effective dementia diagnosis. Table 3 summarizes the distinct
computational methods, algorithms, and tools that are recurrently applied, shedding light
on the analytical frameworks supporting non-invasive biomarker exploration.
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Table 3. Summary of the computational methodologies and algorithms for non-invasive biomarker
monitoring presented in the current study.

Computational Methodology Algorithm Reference(s)

Supervised ML

SVM [22,33,34,49,53,54,56,59–61,66,73]
Random Forest [22,33,36,45,52,56,59,62,63,65,71]
Decision Tree [34,56,62,63,71,74]

Gradient Boosting [24,33,36,45,52,71]
KNN [24,34,61,73]

Logistic Regression [56,60–63,77]
XGBoost [24,61,69]

LightGBM [24]
Gaussian Naive Bayes [73]

LASSO [40]
Linear Discriminant Analysis [34,40]

Quadratic Discriminant Analysis [34]
CART [70]

Ensemble [22,33,76]

Unsupervised ML
K-Means Clustering [62]

Hierarchical Cluster Analysis (HCA) [50]
Gaussian Mixture Models [35]

Deep Learning

ANN [41,54,61]
Convolutional Neural Networks [29,39,46,68]
Fully Convolutional Networks [39]

ResNet [33,35,44,46,51,64,78]
AlexNet [32,55]
CapsNet [72]

U-Net [29,46]
ResNeXt [46]

Masked Autoencoder [65]

Principal Component Analysis [22,34,38,52–54,56,59,65,70]
t-SNE [70]

Neighborhood Component Analysis [57]

Dimensionality Reduction
Wavelet Entropy [57]

Hilbert–Huang Transform [57]
Fast Fourier Transform [59]

Feature Selection and Extraction
SHAP [35,40,45,60]

Saliency Maps [35]
Bioinformatics pipeline [48,49]

Other Cytoscape [49]

In a similar vein, Wang et al. explored non-invasive cognitive impairment diagnostics
through the use of language-based digital markers [60]. The study leverages speech and
cognitive tasks to extract interpretable features that aid in the early detection of cognitive de-
cline, offering a scalable and accessible diagnostic tool. The methodology involved multiple
steps, including extracting acoustic features like the silence duration and pause-to-speech
ratios. The linguistic analyses incorporated part-of-speech tagging and graph metrics to
explore the semantic relationships. Machine learning models such as logistic regression,
random forests, and support vector machines were deployed within the SHAP framework
to ensure feature interpretability. The models were further tested for cross-lingual appli-
cability with data in both Chinese and English, as validated on independent cohorts for
generalizability. Significant findings emerged, with the models achieving accuracy rates of
83% for differentiating normal cognition, amnestic mild cognitive impairment (aMCI), and



Sensors 2025, 25, 1396 21 of 31

Alzheimer’s disease (AD). Cross-lingual robustness was demonstrated with an accuracy
of 76%, while independent cohort validation showed a prediction accuracy of 75%, with
sensitivities and specificities above 68%.

Furthermore, the examination of the clinical outcomes related to hypertensive dis-
orders of pregnancy (HDP) in infertile patients was performed, categorizing cases based
on the mode of conception: unassisted conception (UA), non-IVF treatment (NIFT), and
assisted reproductive technology (ART) [79]. Insights from this work emphasized the im-
portance of patient demographics and clinical history in understanding HDP risks. Clinical
data from 625 singleton pregnancies were analyzed, with patients grouped into the UA,
NIFT, and ART categories. Parameters such as gestational hypertension, preeclampsia, age,
BMI, chronic hypertension, diabetes, and nulliparity were evaluated. Structured clinical
records formed the basis of the analysis, without integrating molecular data or wearable
devices. No specific biological tissue was investigated. Instead, the focus remained on
clinical outcomes and gestational factors. Statistical approaches, including chi-squared
tests and ANOVA, compared the HDP diagnoses and gestational ages across groups, while
additional risk factors like the BMI and age were analyzed with R software using a signif-
icance threshold of 0.05. No significant differences in the HDP incidence were observed
across the conception methods, with a p-value of 0.66. The gestational hypertension and
preeclampsia rates were similar in the UA, NIFT, and ART groups. The ART patients were
slightly older, averaging 38.7 years, and the BMI differences, though statistically significant,
were minor.

3.5. Combined Modality Studies

There are studies that combine data from multiple modalities to develop innovative
diagnostic approaches for various diseases. In this vein, Shahrbabak et al. [68] presented a
proof-of-concept study using synthetic data and deep learning techniques to establish the
efficacy of non-invasive peripheral artery disease (PAD) diagnosis. This work emphasizes
the potential of computational models integrated with non-invasive biomarkers like pulse
volume recording (PVR) waveforms to offer accessible and affordable diagnostic solutions.
The investigation centered on arterial pulse waveforms derived from the brachial and tibial
arteries. These waveforms reflected the blood circulation dynamics rather than biological
tissues like blood or saliva, offering a novel perspective on non-invasive diagnostics.
The in silico methodology encompassed synthetic data generation using a multi-branch
transmission line model to simulate realistic BP and PVR waveforms across varying PAD
severity levels. The CNN, based on the AlexNet architecture with continuous property-
adversarial regularization (CPAR), was trained to classify PVR waveforms. Comparative
performance analysis between PVR waveforms, BP waveforms, and the conventional ankle-
brachial index (ABI) highlighted the CNN’s diagnostic capabilities. Key metrics such as the
sensitivity, specificity, accuracy, and the area under the ROC curve (AUC) were used for
evaluation. The results demonstrated high diagnostic accuracy, with the CNN achieving an
AUC of ≥0.89 using the PVR data, comparable to the BP data (AUC ≥ 0.96) and significantly
outperforming the ABI (AUC ≤ 0.59). The positive and negative predictive values for PAD
detection were robust, measuring ≥ 0.78 and ≥ 0.85, respectively. Although the CNN
effectively detected PAD, its performance in estimating the PAD severity was moderate,
with a correlation coefficient of 0.77.

Similarly, Beltran et al. [52] conducted an experimental study integrating machine
learning approaches with biomarker analysis to predict the progression of Alzheimer’s
disease (AD) from mild cognitive impairment (MCI). This work underscores the potential
of plasma-based biomarkers as a cost-effective and non-invasive diagnostic alternative,
particularly in the early stages of the disease. By incorporating advanced computational
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methods, the study enhanced the predictive accuracy, contributing to scalable diagnostic
solutions. The research focused on identifying plasma biomarkers that could predict the
transition from MCI to AD, leveraging machine learning models to develop accessible
diagnostic methods. Drawing from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database, the study utilized datasets that included 145 plasma analytes, composite
cognitive scores for memory and executive function, and demographic variables such
as the age, BMI, and ApoE4 gene status. High-dimensional data were reduced using
principal component analysis (PCA) for MRI data and prior knowledge-based selection of
significant plasma biomarkers. Multiple machine learning models, including classification
and regression trees (CARTs), random forests (RFs), gradient boosting (GB), and support
vector machines (SVMs), were trained and evaluated using performance metrics like
the area under the ROC curve (AUC), sensitivity, and precision–recall curve. Stringent
validation methods, such as leave-two-out cross-validation and testing on separate datasets,
ensured robust model evaluation. Integrating cognitive scores, demographic data, and
plasma biomarkers yielded an AUC of approximately 0.75, with the addition of the MRI
atrophy variables improving this to 0.77. The significant plasma biomarkers included
apolipoproteins, leptin, insulin, and CRP, all of which were identified as critical predictors
of disease progression.

Additionally, an experimental study focused on non-invasive biomarker identification
for staging liver fibrosis was executed [63]. Their work investigated serum markers and
patient characteristics, such as the liver enzyme levels and RNA markers, to replace the
need for invasive liver biopsies. By leveraging machine learning techniques, the study
highlights a promising approach for diagnosing liver fibrosis in a non-invasive and cost-
effective manner. The research utilized data from a cohort of 1385 patients undergoing
hepatitis C virus (HCV) treatment over 15 months. This dataset included serum markers
like alanine transaminase (ALT), aspartate transaminase (AST), and RNA levels at various
treatment weeks, as well as patient demographics such as age, BMI, and clinical symptoms
like fatigue and jaundice. The computational pipeline involved several steps, starting
with data preprocessing techniques like one-hot encoding for categorical variables and
Z-score standardization for continuous variables. Feature selection was performed using
a random forest classifier to identify the most relevant variables contributing to model
accuracy. Classification models, including logistic regression, random forest, and multi-
layer perceptron (MLP), were applied to predict fibrosis stages. Additionally, a decision tree
algorithm was used to generate interpretable diagnostic rules. The models were rigorously
validated through five-fold stratified cross-validation to ensure their reliability. The MLP
model demonstrated exceptional predictive accuracy, achieving 97.83% with the full feature
set and 97.40% with a reduced feature set. The random forest and logistic regression models
also performed well, with accuracies exceeding 97%. The RNA levels measured after four
weeks of treatment emerged as the most significant predictor, while the ALT and AST levels
were crucial for distinguishing between stages like portal fibrosis and cirrhosis. The study
also generated a concise set of 28 interpretable rules for staging fibrosis, simplifying the
diagnostic process compared to earlier models with over 98,000 rules.

Moreover, Jain et al. [72] presented an experimental study that combined IoT technolo-
gies, artificial intelligence, and deep learning to develop a secure, non-invasive diagnostic
framework for COVID-19. This innovative approach integrates non-invasive tools, such
as thermal scanners and pulse oximeters, with advanced machine learning techniques to
detect early biomarkers indicative of COVID-19 infection. The research utilized data from
thermal imaging, oxygen saturation levels measured through pulse oximeters, and chest
X-ray images. These datasets were processed using IoT devices and analyzed through
deep learning models to enhance the diagnostic accuracy. The computational pipeline for
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the study was structured into three distinct phases. Initially, an AI-enabled chatbot was
employed to collect symptom information from users. This was followed by non-invasive
physiological measurements, including body temperature and oxygen saturation, using IoT
devices such as thermal scanners and pulse oximeters. In the final phase, chest X-ray data
were analyzed using two deep learning models: COVID-ConvNet and COVID-CapsNet.
The ConvNet model utilized convolutional layers for feature extraction, while the CapsNet
model leveraged capsule networks to preserve the spatial hierarchies, enhancing the classi-
fication accuracy. Both models were trained and validated on relevant datasets, with the
performance evaluated through the precision, recall, and accuracy metrics. The findings
revealed that COVID-CapsNet outperformed COVID-ConvNet, achieving an impressive
accuracy of 97%, compared to 86% for the ConvNet model. The framework demonstrated
significant potential in identifying COVID-19 in its early stages by combining IoT-enabled
diagnostic tools with AI-driven analysis.

In addition, Hu et al. [41] introduced an experimental framework that integrates
circulating tumor cells (CTCs) from liquid biopsies with multimodal magnetic resonance
imaging (MRI) radiomics to enhance glioma diagnosis and molecular classification. This
innovative approach combines non-invasive diagnostic tools to address both tumor grading
and molecular subtyping, offering a precision medicine alternative for patients unsuitable
for invasive procedures. The research utilized MRI data from preoperative scans sourced
from the BraTS 2019 database and proprietary datasets from two medical centers. In addi-
tion, liquid biopsy data were derived from peripheral blood samples analyzed for CTCs.
These datasets were fed into a multi-task deep learning radiomic model to achieve com-
prehensive diagnostic outcomes. The MRI preprocessing included segmentation through
CSPDarkNet-tiny-based models, skull stripping, and bias field correction, ensuring high-
quality radiomic feature extraction. The computational model combined these radiomics
with CTC-derived numerical data for glioma grading and molecular classification, such
as IDH mutations and ATRX deletions. The peripheral blood samples underwent CTC
enrichment and molecular characterization through MALBAC single-cell amplification and
Illumina sequencing. The framework achieved notable success in preoperative glioma grad-
ing and molecular subtyping by effectively integrating imaging and liquid biopsy features.
While the specific performance metrics were not fully detailed, the study demonstrates the
potential of combining radiomics and molecular diagnostics to improve the precision and
reliability in glioma diagnosis.

Cook et al. [42] presented an innovative approach to non-invasive biomarker identifi-
cation, introducing the TumorIO biomarker. This computational tool integrates biophysical
features derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)
with transcriptomic data to predict responsiveness to immune checkpoint inhibitors (ICIs).
By combining imaging and transcriptomics, the research addresses the need for precise,
personalized approaches to immunotherapy. The study utilized DCE-MRI scans and RNA-
seq data from breast cancer patients enrolled in the I-SPY1 and I-SPY2 clinical trials. The
imaging data underwent biophysical simulations to extract the spatial and temporal tumor
features, while the transcriptomic analyses focused on genes associated with metabolic
and angiogenic activity. The computational framework relied on a biophysics simulation
platform, integrating imaging data with RNA-seq results to characterize the tumor microen-
vironment comprehensively. The tumor tissue and the surrounding microenvironment
were analyzed through imaging and biophysical simulations, capturing dynamic changes
in the blood flow, nutrient delivery, and immune activity. The computational pipeline
included the analysis of transcriptomic data to identify key metabolic and angiogenic
genes, biophysical modeling of DCE-MRI data using the Simul-omics 4D Engine, and
the development of the TumorIO Score. This score, based on a linear regression model,
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was validated using a small patient cohort and virtual clinical trials to ensure predictive
accuracy. The TumorIO biomarker demonstrated exceptional performance, predicting
a pathologic complete response (pCR) in 88.2% of an independent cohort. Specifically,
10 out of 12 predictions were accurate in triple-negative breast cancer (TNBC), and all
5 predictions were correct in hormone-receptor-positive (HR+)/HER2- tumors. Virtual
clinical trials using TumorIO closely mirrored the real-world outcomes, with predicted pCR
rates of 67.1% for TNBC and 17.9% for HR+/HER2- tumors.

Last but not least, [51] Hou et al. explored a groundbreaking approach to diagnosing
glomerular diseases using hyperspectral imaging and artificial intelligence. By focusing on
urine as a non-invasive biofluid, the study highlights the potential of leveraging spectral
data to classify specific glomerular diseases accurately. Urine samples were collected
from 65 patients diagnosed with idiopathic membranous nephropathy, minimal change
nephropathy, IgA nephropathy, and diabetic nephropathy. Hyperspectral imaging was
employed to capture spectral information ranging from 400 to 1000 nm, transforming
the urine samples into digitized 2D spatial–spectral images. These data enabled detailed
spectral analysis to differentiate disease-specific patterns effectively. A 34-layer residual
network (ResNet) was constructed to analyze the spectral data. The model was trained and
validated using 84,000 spectral images, with 80% allocated to training and 20% reserved for
testing. Statistical analyses, including the Kruskal–Wallis H test, were performed to validate
the spectral differences across disease types. Performance metrics such as the sensitivity,
specificity, and ROC curves were used to evaluate the model’s diagnostic accuracy. The
model achieved exceptional diagnostic accuracy of 96%, with sensitivity values ranging
from 94% to 97% and specificity exceeding 98%. The AUC for the test set was similarly high
at 96%, demonstrating the robustness of the approach. The significant spectral differences
among the disease groups further validated the potential of hyperspectral imaging as a
diagnostic tool.

4. Discussion
The analysis of the investigated studies reveals a predominant focus on imaging and

molecular data as the primary sources for biomarker identification. These data modalities
are frequently leveraged due to their capacity to provide comprehensive insights into
disease mechanisms and states. A noteworthy observation is the significant emphasis on
utilizing machine learning (ML) and artificial intelligence (AI) tools for biomarker discovery,
interpretation, and potential diagnostic applications. Both classical ML approaches and
more advanced deep learning methods have been extensively applied, highlighting their
pivotal role in advancing the field [80].

This trend aligns with the publication patterns depicted in Figure 5, which illustrates
the growing research interest in non-invasive biomarker methodologies over the past
decade. An analysis of Google Scholar publications from 2015 to 2024 demonstrates the
increasing prevalence of studies incorporating terms such as “Non-invasive Biomarkers +
Machine Learning” and “Non-invasive Biomarkers + Omics Analysis”. The data reveal a
sharper rise in publications referencing “machine learning”, underscoring its expanding in-
fluence on enhancing the precision and applicability of non-invasive biomarker techniques.
These trends emphasize the dual importance of omics analyses and machine learning
models in shaping the future of non-invasive diagnostics and prognostics, reaffirming their
transformative potential in the development of advanced diagnostic tools.
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within the field of biomarker research. A sharper increase is evident in studies referencing machine
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trends emphasize the significance of both omics analyses and machine learning models and their
potential in the development and enhancement of non-invasive diagnostic and prognostic tools.

Moreover, non-invasive biomarkers have markedly transformed clinical practice by
enhancing the precision and efficiency of disease diagnosis and management. For instance,
clinical prediction rules such as FIB-4, in combination with serum-based and elastography-
based assessments, have become essential tools in the early risk stratification of liver
diseases, enabling clinicians to identify patients at higher risk of adverse outcomes more
reliably. Similarly, advanced MRI-based biomarkers are now instrumental in monitoring
treatment responses in early-phase non-alcoholic steatohepatitis trials, paving the way for
more individualized therapeutic strategies. In parallel, the integration of non-invasive
approaches in other clinical areas, such as lung cancer care, has contributed to more effective
symptom management and improved quality of life. Overall, these innovations reduce
the reliance on invasive diagnostic procedures, streamline clinical decision-making, and
support a move toward precision medicine, thereby optimizing patient outcomes and
resource allocation within healthcare settings [81,82].

Despite the promising potential of non-invasive biomarkers, several challenges must
be addressed to facilitate their integration into routine clinical practice. One significant
obstacle is the limited sensitivity and specificity of some non-invasive biomarkers compared
to traditional invasive methods. These limitations can result in false positives or negatives,
hindering their reliability for early diagnosis and accurate disease monitoring. Furthermore,
the variability of biomarker levels across populations, influenced by factors such as age,
gender, ethnicity, and lifestyle, adds complexity to establishing standardized thresholds
and interpretations. This lack of uniformity can affect the reproducibility of results and
complicate the development of universal diagnostic criteria.

In addition, the reliance on limited datasets presents a significant challenge in de-
veloping effective non-invasive diagnostic models for specific diseases. The use of small
sample sizes and lack of diverse data sources may lead to models that do not adequately
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capture the full spectrum of patient variability, ultimately compromising both accuracy and
reliability. This shortfall in data representation risks producing diagnostic tools that may
function well under controlled conditions yet falter in real-world clinical settings, where
patient demographics and disease presentations are far more heterogeneous.

Another challenge comes from artifacts introduced by the use of machine learning
(ML) and big data techniques, particularly when integrating datasets collected under
different conditions. As highlighted in the study by Javaid et al., the adoption of health in-
formatics and AI-driven decision-making can be influenced by variations in data collection
environments, infrastructure differences, and the heterogeneity of imaging technologies
used across institutions. Similarly, Dash et al. emphasized that the effectiveness of big
data analytics in healthcare depends on systematic data integration and proper handling of
discrepancies arising from diverse data sources. For example, if healthy volunteer data are
predominantly sourced from routine screenings at local clinics using standard equipment,
while clinical data for more severe cases are obtained from hospitals with advanced imaging
facilities, ML models may learn to rely on image quality differences or vendor-specific
artifacts rather than genuine disease-related patterns. This issue underscores the necessity
of incorporating metadata and demographic adjustments to mitigate potential biases and
improve model generalizability [83,84].

The required data size for different studies varies significantly depending on the
complexity of the research question, the analytical methods employed, and the nature
of the data itself. Big data analytics in healthcare often involves integrating electronic
health records, medical imaging, genomic data, and real-time sensor outputs from wearable
devices. While some studies, such as population-wide epidemiological research, demand
extensive datasets to capture diverse demographic and clinical variables, others, like
targeted biomarker discovery, can achieve meaningful results with smaller but high-quality
datasets. The scalability of the data infrastructure also plays a crucial role in determining
the feasibility of large-scale machine learning models. A study on disease prediction using
deep learning may require millions of samples to ensure robust generalization, whereas
a focused investigation into the effects of a specific drug may rely on a much smaller,
curated dataset. Understanding the relationship between dataset size, study objectives,
and computational constraints is essential for optimizing the balance between data volume
and analytical rigor.

Another key challenge lies in the technological and computational aspects of non-
invasive biomarker research. The analysis of multi-modal data, including omics datasets
and imaging results, often requires advanced ML and AI tools, which can be resource-
intensive and demand significant expertise. Additionally, there are concerns regarding
data quality, as non-invasive samples like saliva or breath can be affected by external
contaminants or inconsistent collection protocols. Ensuring robust validation of biomarkers
across diverse clinical settings and populations is essential to overcome these hurdles.
Addressing these challenges through rigorous research, standardization, and technological
advancements may be critical to fully exploiting the potential of non-invasive biomarkers
in precision medicine.

5. Conclusions
Non-invasive biomarkers are increasingly important for managing chronic conditions

and conducting large-scale health screenings, offering the advantage of more frequent and
accessible testing while reducing the risks associated with traditional procedures. This
shift underscores the demand for diagnostic strategies that prioritize ease of use, patient
well-being, and cost-efficiency, without sacrificing diagnostic precision. The integration of
cutting-edge computational technologies, including high-throughput big data analytics
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through AI and ML techniques, is revolutionizing clinical practices. These enhancements
help in recognizing novel patterns and predictive biomarkers in vast, multi-dimensional
datasets. As a result, non-interventional approaches are transforming the field of disease
detection and monitoring, enabling earlier, more accurate diagnoses and personalized
treatment plans for patients.
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